Eric Hallman

Contact

Email: erhallma at ncsu dot edu
Office: SAS 3110

Research

My research interests lie in numerical linear algebra, particularly in error estimation for iterative methods, randomized roundoff error analysis, matrix sketching, and stochastic trace estimation.

CV

Publications and Preprints

    H. Al Daas, G. Ballard, P. Cazeaux, E. Hallman, A. Miedlar, M. Pasha, T.W. Reid, A.K. Saibaba, Randomized algorithms for rounding in the Tensor-Train format, 2021. pdf arXiv
    E. Hallman and I. Ipsen, Deterministic and probabilistic error bounds for floating point summation algorithms, 2021. pdf arXiv
    E. Hallman, A refined probabilistic error bound for sums, 2021. pdf arXiv
    E. Hallman and D. Troester, A multilevel approach to stochastic trace estimation, in revision, 2021. pdf arXiv
    E. Hallman, A block bidiagonalization method for fixed-accuracy low-rank matrix approximation, in revision, 2021. pdf arXiv
    E. Hallman, Faster stochastic trace estimation with a Chebyshev product identity, Applied Mathematics Letters 120, 107246, 2021. pdf online
    E. Hallman, Estimating the backward error for the least-squares problem with multiple right-hand sides, Linear Algebra Appl. 605 (2020), pp. 227-238. pdf online
    E. Hallman, Sharp 2-norm error bounds for LSQR and the conjugate gradient method, Siam J. Matrix Anal. Appl. 41(3) (2020), pp. 1183-1207. pdf online
    E. Hallman and M. Gu, LSMB: minimizing the backward error for least-squares problems, Siam J. Matrix Anal. Appl. 39(3) (2018), pp. 1295--1317. pdf online

Talks

Code

Teaching

NCSU UC Berkeley Last update: October 15, 2021