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Abstract. This article presents a randomized matrix-free method for approximating the trace
of f(A), where A is a large symmetric matrix and f is a function analytic in a closed interval
containing the eigenvalues of A. Our method uses a combination of stochastic trace estimation
(i.e., Hutchinson’s method), Chebyshev approximation, and multilevel Monte Carlo techniques. We
establish general bounds on the approximation error of this method by extending an existing error
bound for Hutchinson’s method to multilevel trace estimators. Numerical experiments are conducted
for common applications such as estimating the log-determinant, nuclear norm, and Estrada index,
and triangle counting in graphs. We find that using multilevel techniques can substantially reduce
the variance of existing single-level estimators.
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1. Introduction. Given a symmetric matrix A ∈ Rd×d and a function f : R→
R, we consider the problem of estimating

(1.1) tr (f(A)) =
d∑

i=1
f(λi),

where λ1, . . . , λd are the eigenvalues of A. This could in theory be done by computing
the eigenvalues of A, but when A is large this option is impractical. A cheaper
option is to use stochastic trace estimation, which estimates tr (f(A)) by computing
quantities of the form zT f(A)z, where z is a random vector.

Four functions of particular interest are f(x) = log(x), f(x) = 1/x, f(x) =
exp(x), and f(x) = xp/2, which correspond respectively to the log-determinant of a
matrix, the trace of the inverse, the Estrada index, and the Schatten p-norm1. For
these functions it is not practical to compute zT f(A)z to machine precision, but
neither is it necessary for the purpose of estimating the quantity in (1.1). Instead, it
suffices to estimate zT f(A)z by constructing a polynomial or rational approximation
to f , or by using Lanczos quadrature [1, 2]. The accuracy, and therefore the cost,
of these approximations is governed by the accuracy to which one wishes to estimate
tr (f(A)). A typical analysis of one of these methods might provide a theorem along
the following lines:

In order to estimate tr (f(A)) to tolerance ε with failure probability
at most δ, sample zT f(A)z at least m times with a level-n approxi-
mation of f(A).

In the above, the term “level-n” may refer to a degree-n polynomial approximation
or an n-point quadrature rule—either way, larger values of n correspond to more
accurate and expensive approximations.

The aim of this article is to provide a general mechanism by which such methods
might be improved.

∗ This research was supported in part by the National Science Foundation through grant DMS-
1745654.
†North Carolina State University (erhallma@ncsu.edu, https://erhallma.math.ncsu.edu/).
1In the latter case, we use ‖X‖p

p = tr(XT X)p/2 = tr f(A), where A = XT X.
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2 E. HALLMAN AND D. TROESTER

1.1. Our approach. We propose a method for reducing the cost of any stochas-
tic trace estimation technique that approximates quantities of the form zT f(A)z to
variable accuracy. We focus specifically on Chebyshev approximation, but the method
may be adapted to use Taylor series, rational approximations, or Lanczos quadrature.
It may also be used in conjunction with other variance reduction methods such as
those in [3].

The key idea is that by taking many samples with a crude approximation to
f(A) and a few samples with an accurate approximation to f(A), we can obtain
a better estimate than we would have gotten simply by taking a moderate number
of samples with an accurate approximation. This technique is known as multilevel
Monte Carlo [4], which was originally developed for path simulation problems and has
since found a wide variety of applications including chemical reaction networks [5],
aerospace engineering [6], and rare event estimation [7]. Our application of multilevel
techniques to trace estimation is outlined in Section 3.

In applying multilevel techniques to trace estimation problems, the user must
choose how to set the levels: how crude should a “crude” approximation to f(A) be,
and how many different approximations should be used? Under a certain framework it
turns out that these questions have an optimal answer, summarized by Theorem 3.1.
Based on this theorem, we propose a method for selecting the levels automatically
based on a pilot sample.

We also show that existing error bounds for trace estimation using Hutchinson’s
method may be extended to multilevel methods. This result is presented in Theorem
4.2, which offers a general framework for deriving (δ, ε)-type error guarantees for
multilevel estimators.

Numerical experiments show that the multilevel estimator can have a significantly
smaller variance than the single-level estimator, particularly on nuclear norm estima-
tion problems. We also consider the problem of triangle counting in graphs, and show
that using a certain set of control variates can modestly reduce the variance of existing
trace estimates at minimal additional cost.

1.2. Summary of contributions. The key contributions of this article are as
follows.

• Equations (3.1) and (3.2) show how multilevel Monte Carlo techniques may
be applied to stochastic trace estimation problems.

• Using Theorem 3.1, we propose a method for selecting levels automatically
and without the need for additional user input.

• Theorem 4.2 extends existing error bounds for single-level trace estimators to
the multilevel framework.

• In Section 5.4 we propose a related variance reduction technique for estimat-
ing the number of triangles in a graph.

• Numerical experiments in Section 5 demonstrate the practical benefit of our
methods.

1.3. Outline. Section 2 provides background on stochastic trace estimation,
Chebyshev interpolation, and multilevel Monte Carlo methods. Section 3 describes
how multilevel methods may be applied to trace estimation and provides a procedure
for selecting the parameters for the multilevel estimator. Section 4 generalizes an ex-
isting error bound for single-level estimators to the multilevel case. Section 5 contains
the results of numerical experiments on real data, and Section 6 offers our concluding
remarks.
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1.4. Notation. Matrices, vectors, integers, and scalars will typically be denoted
as A, a, a, and α, respectively, with I denoting the identity matrix. The expressions
E[X] and V[X] respectively denote the expected value and variance of a random
variable X. The trace of a matrix A is tr(A) and ‖A‖F and ‖A‖2 are its Frobenius
and operator norms, respectively. If A ∈ Rd×d is a symmetric matrix with spectral
decomposition

∑d
i=1 λiqiqT

i , then for a real-valued function f we define f(A) =∑d
i=1 f(λi)qiqT

i .

2. Background. Here we review Hutchinson’s method, Chebyshev approxima-
tion, and multilevel Monte Carlo methods. For more background on these topics, see
e.g. [8] and [9].

2.1. Hutchinson’s method. A common method for trace estimation relies on
the following theorem [10]:

Theorem 2.1. Let A ∈ Rd×d be a symmetric matrix, and let z ∈ Rd be a random
variable such that E[zzT ] = I. Then

E[zT f(A)z] = tr (f(A)) .

If we generate random samples z(1), . . . , z(m) from a Rademacher distribution (entries
±1 with equal probability), the Hutchinson estimator is then given by

(2.1) Γm = 1
m

m∑
i=1

z(i)T f(A)z(i).

Ideally, we will be able to compute or estimate each term z(i)T f(A)z(i) with only a
small number of matrix-vector products with A. Thus if A is sparse or otherwise
permits fast matrix-vector multiplication, the estimator in (2.1) will be cheap to
compute.

Example 2.2. If A is the {0, 1}-valued adjacency matrix for a graph, the number
of triangles in the graph is equal to 1

6 tr(A3). Each term of the form z(i)T A3z(i)

may be evaluated using only three matrix-vector products2, and so stochastic trace
estimation allows us to estimate the number of triangles in a graph without having to
compute A3 explicitly.

In the case where f(A) is symmetric positive semi-definite (SPSD), the following
error guarantee for the Hutchinson estimator is derived in [11]:

Theorem 2.3 (Roosta-Khorasani/Ascher). Let A be SPSD. For a given pair
(ε, δ) of positive numbers, the bound

|Γm − tr(A)| ≤ ε tr(A)

holds with failure probability at most δ if m ≥ 6ε−2 ln(2/δ).

2.2. Chebyshev interpolation. We consider Chebyshev polynomials of the
first kind, which follow the recurrence relation

(2.2) Tj+1(x) = 2xTj(x)− Tj−1(x), j = 1, 2, . . .

2Or two, if the symmetry of the quadratic form is exploited.
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with T0(x) = 1 and T1(x) = x. A given function f : [−1, 1] → R can then be
approximated by the degree-n interpolating polynomial

(2.3) f(x) ≈ pn(x) =
n∑

j=0
cjTj(x).

The interpolating nodes for pn are given3 by

(2.4) xj = cos jπ
n
, 0 ≤ j ≤ n,

and the coefficients cj can be elegantly computed using a fast Fourier transform [12].
Since pn interpolates f on the interval [−1, 1], it follows that pn(A) will be a

good approximation to f(A) if the spectrum of A lies in the interval [−1, 1]. For a
matrix whose spectrum lies in [a, b], we can find an affine function g that maps [a, b]
to [−1, 1], define

f̃ = f ◦ g−1, Ã = g(A),

and approximate tr(f̃(Ã)) using a Chebyshev interpolation of f̃ . We can therefore
assume without loss of generality that the spectrum of A is contained in [−1, 1],
although doing so requires at least a rough estimate of the maximum and minimum
eigenvalues of A.

Expressions of the form zT pn(A)z can then be evaluated by computing zn =
pn(A)z using the recurrence in (2.2), then returning zT zn. Details can be found
in [8], and the process requires n matrix-vector products (matvecs) with A. It is
observed in [13] that by exploiting the symmetry of the quadratic form the number
of matvecs can be reduced to dn/2e.

2.3. Multilevel Monte Carlo. Given a sequence P1, . . . , PL−1 of random vari-
ables approximating PL with increasing accuracy, the quantity of interest E[PL] can
be rewritten as the telescoping sum

(2.5) E[PL] = P1 +
L∑

k=2
E[Pk − Pk−1].

We can then estimate E[PL] by estimating each term on the right hand side indepen-
dently. The insight of multilevel Monte Carlo methods is that if the low-level terms in
(2.5) are cheap to compute and the high-level terms have small variance, this strategy
can be more efficient than sampling PL alone [4, 9].

Let C1 andm1 denote the cost of computing a single sample of P1 and the number
of times it was sampled, and let V1 = V[P1]. Similarly, for 2 ≤ k ≤ L let Ck and mk

respectively denote the cost of a single sample of Pk −Pk−1 and the number of times
it was sampled, and let Vk = V[Pk − Pk−1]. For a fixed variance ε2, the total cost C
is minimized by setting

mk = µ
√
Vk/Ck, where(2.6)

µ = ε−2
L∑

k=1

√
VkCk.(2.7)

3Other variants exist; see [12] for details.
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The total cost of the estimate is therefore given by

(2.8) C =
L∑

k=1
mkCk = ε−2

(
L∑

k=0

√
VkCk

)2

.

If a computational budget C is prescribed rather than a target variance, then the
formula for µ will change but equations (2.6) and (2.8) will still hold. Note that
the solution in (2.6) is only an approximation as it allows the terms mk to take on
non-integer values.

Giles [9] observes that if the terms VkCk are generally decreasing with k then the
first term V1C1 will make the largest contribution to the overall cost. If this is the
case, we can hope to attain a total cost along the lines of C ≈ ε−2V1C1, as opposed
to the standard cost C ≈ ε−2V1CL that would come from estimating PL alone.

3. Multilevel trace estimation. The form of the interpolating polynomial in
(2.3) suggests a natural way to apply multilevel techniques to Chebyshev approxima-
tion. For a fixed degree n for the interpolant pn and indices −1 ≤ `′ < ` ≤ n, we
define the variables

(3.1) Q`′` =
∑̀

j=`′+1
cjzTTj(A)z.

Given a sequence 0 ≤ `1 < `2 < · · · < `L = n we obtain the decomposition

(3.2) zT pn(A)z =
L∑

k=1
Q`k−1`k

,

where for convenience we will always take `0 to be equal to −1. Thus a choice of
levels {`k}L

k=1 corresponds to a partition of zT pn(A)z into L parts, each of which is
a sum of consecutive terms in the polynomial.

Altering the notation of the previous section somewhat, we define V`′` and C`′` to
be the variance and cost of estimating Q`′`. The basic framework for the multilevel
method is then as follows: we choose a set of levels {`k}L

k=1, then take a pilot sample
to estimate the variance at each level. Given a desired variance ε2 or computational
budget C, we then use (2.6) and (2.7) to determine the optimal number of samples
mk for each level.

3.1. Cost estimates. For Chebyshev interpolation, the cost of a sample will be
more or less proportional to the number of matvecs required. The cost of sampling
Q`′` can therefore be modeled as ` if we use the methods of [8], or as d`/2e if we
exploit the symmetry of the quadratic form as in [13].

3.2. Optimal level selection. Considering the form of the cost in (2.8), it
is critical to note that using a large number of levels may be counterproductive,
particularly if the corresponding variances decay slowly. A judicious choice of levels
is therefore necessary if we want our multilevel method to outperform the single-
level estimator. Here we present a method for choosing the levels with the aim of
minimizing the total cost as given in (2.8).

Recalling that the approximate cost of the multilevel method is given by (2.8),
we define for 0 ≤ ` ≤ n the variables

(3.3) C` := min
L

min
{`k}

L∑
k=1

√
V`k−1`k

C`k−1`k
,
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where the minimization is taken over indices satisfying 0 ≤ `1 < · · · < `L = `. In
particular, Cn corresponds to the optimal multilevel cost of approximating zT pn(A)z.
Our goal is to find the set of levels corresponding to this optimal cost.

With perfect information about the variances and costs, it turns out that we can
efficiently find the set of levels corresponding to Cn through dynamic programming.
We summarize this finding in the form of the following theorem.

Theorem 3.1. For 0 ≤ ` ≤ n, let C` be defined as in (3.3). Then Cn can be
computed by the recurrence

(3.4) C` =
{

0 ` = 0,
min0≤`′<` C`′ +

√
V`′`C`′` 1 ≤ ` ≤ n.

Assuming we already know the variances V`′`, Theorem 3.1 implies that we can
compute Cn in O(n2) time. The optimal levels associated with Cn can be obtained
at minimal extra cost. Since n is small compared to the size of A, determining the
optimal levels will be inexpensive compared to the overall cost of trace estimation.

3.2.1. Application to Chebyshev interpolation. In applying the level selec-
tion method of Theorem 3.1 to Chebyshev interpolation, we face two complications.
The first is that we do not have prior knowledge of the variances and so must esti-
mate them. The second is that equations (2.6) and (2.7) assume that the sample sizes
{mk}L

k=1 may take on non-integer values. As a result, our method as described runs
the risk of selecting too many levels and recommending 0 < mk � 1 for the more
expensive levels.

We propose to estimate the variances by taking a pilot sample. For 1 ≤ i ≤ mpilot
we compute the terms {cjz(i)TTj(A)z(i)}n

j=0, storing them in a matrix of size mpilot×
(n + 1). The variances can then be estimated from this information in O(n2mpilot)
time, which will generally be small compared to the overall cost of trace estimation.
The pilot samples may subsequently be reused for the trace estimate.

Remark 1. An alternate method might be to use the Chebyshev coefficients to
bound the variances at each level. We tried but ultimately rejected this approach, as
the resulting bounds were too pessimistic. Performance improved when we made the
assumption that zTTj(A)z and zTTj′(A)z were uncorrelated whenever j 6= j′, but it
is not clear whether this assumption is realistic enough to be reliable.

To resolve the issue of the sample sizes taking on non-integer values, we make
the following modification: for 0 ≤ ` ≤ n − 1 we compute C` using the recursion
in (3.4), but when computing Cn we add the additional constraint that the number
of samples recommended for the highest level should be at least mpilot. To obtain
a “recommended” number of samples, we require either a target variance ε2 or a
computational budget C.

4. Error bounds for multilevel methods. In this section, we derive error
guarantees for multilevel methods. Given a set of levels {`k}L

k=1 and sample sizes
m = {mk}L

k=1, we define the estimator

(4.1) Γm =
L∑

k=1

mk∑
i=1

1
mk

Q
(i,k)
`k−1`k

,
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where the (i, k) superscripts denote independent samples. Alternately, we may define
for 1 ≤ k ≤ L the matrices

(4.2) Ak =
`k∑

j=`k−1+1
cjTj(A).

Then pn(A) =
∑L

k=1 Ak, and we can express the multilevel estimator in the form

(4.3) Γm =
L∑

k=1

mk∑
i=1

1
mk

z(i,k)T Akz(i,k),

where the z(i,k) are independently drawn Rademacher vectors. We can then obtain
bounds on the accuracy of the estimator Γm by using the following theorem, due to
[14]:

Theorem 4.1 (Cortinovis/Kressner). Let z ∈ Rd be a Rademacher vector and
let A ∈ Rd×d be a nonzero symmetric matrix with all-zero diagonal entries. Then for
all ε > 0,

(4.4) Pr
(
|zT Az| ≥ ε

)
≤ 2 exp

(
− ε2

8‖A‖2
F + 8ε‖A‖2

)
.

Cortinovis and Kressner subsequently use Theorem 4.1 to derive error bounds for
single-level estimates. We use the same proof technique to extend their bounds to
multilevel methods.

Theorem 4.2. Let Â ∈ Rd×d be a nonzero symmetric matrix. Let {Ak}L
k=1 be

symmetric matrices such that Â =
∑L

k=1 Ak, and for 1 ≤ k ≤ L let Bk equal Ak

but with the diagonal entries set to zero. For sample sizes m = {mk}L
k=1, let Γm be

defined as in (4.3). Then for all ε > 0,

(4.5) Pr
(
|Γm − tr(Â)| ≥ ε

)
≤ 2 exp

 −ε2/8∑L
k=1 ‖Bk‖2

F /mk + ε max
1≤k≤L

‖Bk‖2/mk

 .

Furthermore, for 1 ≤ k ≤ L let Vk = ‖Bk‖2
F + ε‖Bk‖2 and let Ck represent the cost

of sampling from Bk. Then if mk ≥ µ
√
Vk/Ck where

(4.6) µ = 8ε−2 log(2/δ)
L∑

k=1

√
VkCk,

it follows that Pr
(
|Γm − tr(Â)| ≥ ε

)
≤ δ.

Proof. Let m =
∑L

k=1 mk, and let B be a block diagonal matrix in Rmd×md with
mk copies of Bk/mk as its diagonal blocks. The matrix B has zero diagonal and
satisfies

‖B‖2
F =

L∑
k=1
‖Bk‖2

F /mk,

‖B‖2 = max
1≤k≤L

‖Bk‖2/mk.
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The first result follows by applying Theorem 4.1 to B. The second follows by us-
ing the relaxation max1≤k≤L ‖Bk‖2/mk ≤

∑L
k=1 ‖Bk‖2/mk and setting the failure

probability in (4.5) to δ.
When using the sampling strategy proposed in Theorem 4.2, the total cost of the

multilevel estimator for a given pair (ε, δ) can be approximated as

(4.7) C = 8ε−2 log(2/δ)
(

L∑
k=1

√
VkCk

)2

.

This expression closely resembles the one in (2.8), with the caveat that Vk and ε refer to
different quantities in these two equation. The single-level estimator, by comparison,
guarantees an error of ε with failure probability δ at a cost of 8ε−2VtotCtot, where
Vtot = ‖B‖2

F + ε‖B‖2 and Ctot is the cost of sampling from B.
In short, multilevel estimators can be expected not only to have smaller variances

than their single-level counterparts, but better (ε, δ)-type error bounds as well. One
limitation of Theorem 4.2 is that since we do not know ‖Bk‖F or ‖Bk‖2 in advance, it
does not directly give practical advice on how to choose the number of samples. More
work must be done to derive error guarantees for individual functions of interest, as
is done in [8] or [1], but we leave this matter for a future study.

5. Numerical experiments. In this section we conduct several experiments
to examine the behavior of our multilevel estimator, particularly in comparison to
single-level methods. All experiments were conducted using MATLAB 2020b on an
Intel Core i7 3.5GHz machine, and the code used to produce all figures and tables is
available at https://github.com/erhallma/multilevel-trace-estimation/.

Table 5.1 contains a list of the matrices used in our experiments. Most come
from the SuiteSparse database [15]. Matrices ca-GrQc and wiki-Vote are the excep-
tions, which were obtained from the Stanford Large Network Dataset Collection4. We
examine four functions in particular: f(x) =

√
x (for estimating the nuclear norm),

f(x) = log(x) (log determinant), f(x) = exp(x) (Estrada index), and f(x) = x3 (tri-
angle counting). For information on practical applications, we refer the reader to [16]
or [8] and the references therein.

5.1. Automated level selection. In section 3.2 we propose a method for choos-
ing the levels on the basis of a pilot sample and without the need for further user input.
Here we illustrate how this method behaves in practice.

We use our multilevel method to estimate the nuclear norm of the matrix FA (see
Table 5.1), representing a directed unweighted graph with 10617 nodes and 72176
edges. We estimate tr

(
(AT A)1/2), approximating the function f(x) = x1/2 with a

degree 300 polynomial and using a budget of 15,000 matvecs, the equivalent of 50
samples for a single-level method. In order to estimate the variances at each level for
the purpose of level selection, we tke 10 samples using the degree 300 approximation.

Figure 5.1 shows the behavior of the multilevel method over 100 trials. In general,
we make the following observations:

• The number of levels chosen is highly variable. The median trial uses twenty
levels, but the number of levels ranges from as few as seven to as many as
fifty-nine.

• The selected levels tend to appear in a smaller number of clusters. Table 5.2
shows one fairly typical case using eighteen levels. Aside from the consecutive

4See https://snap.stanford.edu/data/.

https://github.com/erhallma/multilevel-trace-estimation/
https://snap.stanford.edu/data/
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Matrix Application Size nnz
thermal2 Thermal 1228045 8580313
thermomechTC Thermal 102158 711558
boneS01 Model reduction 127224 5516602
ecology2 2D/3D 999999 4995991
ukerbe1 2D/3D 5981 15704
dictionary28 undirected graph 52652 178076
Erdos02 undirected graph 6927 16944
fe_4elt2 undirected graph 11143 65636
California Web search 9664 16150
deter3 Linear program 7647×21777 44547
FA Pajek network 10617 72176
Roget Pajek network 1022 7297
ca-GrQc undirected graph 5242 28968
wiki-Vote undirected graph 7115 201524

Table 5.1
Matrices used in our numerical experiments. All matrices with the exception of deter3 are square.

levels 1–11, the method also selects the smaller clusters (45,46,47) and (63,65)
in this example.

• Despite the variability in the number of levels selected, the budget allocation
by level is fairly consistent between trials. For example, a typical trial spends
around 60-70 percent of its computational budget on polynomials of degree
50 or less.

• The median degree of the second most expensive level is 86 over the 100 trials,
and the maximum degree is 137. Thus although a high-degree polynomial may
be needed to obtain a certain approximation accuracy, the multilevel method
devotes most of its effort to estimating terms of significantly lower degree.

Fig. 5.1. Behavior of automated level selection over 100 trials. Left: number of levels chosen.
Right: budget allocation.

We then compare the performance of the multilevel method with automated level
selection against the single-level estimator, as well as the multilevel estimator with
two different sets of prescribed levels. The first of these uses the three levels {3, 30,
300}, the sort of selection one might make with no other knowledge of the system.
The second uses the seventeen levels {1,2,. . . ,15, 29, 300}. This latter choice was
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Level 1 2 3 4 5 6 7 8 9
Samples 776 330 180 134 90 68 52 44 33
Level 10 11 45 46 47 63 65 119 300

Samples 21 22 94 2 2 11 3 11 12
Table 5.2

The levels and sampling numbers from a fairly typical trial for a nuclear norm estimation
problem. The multilevel method used 15,070 matvecs given a budget of 15,000.

informed by using automated selection on a pilot of 100 samples, so we expect it to
be reasonably close to the optimal choice for this problem.

Results are shown in Figure 5.2, where 100 trials are run for each method. As
expected, the 17-level method is the most accurate with a standard error of approxi-
mately 0.47. Automated level selection performs about as well as the 3-level method,
with a standard error of approximately 0.54. The single-level approximation has a
standard error of about 1.53, lagging significantly behind all of the multilevel variants.

These results suggest that choosing the levels on the basis of a pilot sample can
work well in practice despite the variation in exactly which levels are chosen. It
does not appear to be necessary to choose too many levels, as even the three-level
method showed significant improvement over the single-level method. In practice,
we recommend erring on the side of using too few levels rather than too many since
taking a larger number of samples at each level will make the variance estimates more
accurate.

Fig. 5.2. Nuclear norm estimates over 100 trials, comparing automated level selection with
using a fixed set of levels.

5.2. Degree of approximating polynomial. When using stochastic trace es-
timation, one faces the problem of deciding how to set the degree of the approximat-
ing polynomial pn. Ideally, the degree n and number of samples m should be chosen
so that the errors |Γm − tr(pn(A))| and | tr(pn(A))− tr(f(A))| are similar in magni-
tude—a large difference between the two suggests a waste of computation, either from
drawing too many samples or from using too accurate a polynomial approximation.

In this experiment, we explore the behavior of single-level and multilevel methods
as the degree of the approximating polynomial changes. We again estimated the
nuclear norm of the matrix FA, this time allowing the degree n to range from 25
to 350. The single-level method used 50 samples for each trial, and the multilevel
method used the equivalent computational budget (i.e., 50n matvecs for a degree n
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polynomial).
Results are shown in Figure 5.3, where we ran 100 trials for each method and each

polynomial degree n. The plot on the left shows the approximate standard errors at
each degree, as well as the error | tr(pn(A))−tr(f(A))| due to the polynomial approx-
imation for reference. For the single-level method this quantity is essentially constant,
which is to be expected since we take the same number of samples at each degree.
The multilevel method outperforms the single-level method even on the coarsest ap-
proximation, and continues improving as the approximation degree increases. The
reason for this is that as the computational budget increases, the multilevel method
devotes most of its effort to taking more samples at the lower levels. The single-level
method, by contrast, takes the same number of samples as before but just at higher
degrees.

The plot on the right shows the median relative approximation errors over 100
trials, along with the 25th and 75th percentile errors. For smaller degrees, the accu-
racy of both single-level and multilevel methods is constrained by the accuracy of the
polynomial approximation rather than the number of samples. Somewhere between
n = 150 and n = 200, the single-level method becomes constrained by the number of
samples and shows no further improvement as the degree increases. The multilevel
method remains close to optimal until around n = 250 and continues to improve
afterwards.

One implication of these results is that the advantage of using multilevel meth-
ods will be greater when more accurate estimates are desired (and therefore, when
higher-degree polynomial approximations are needed). A second implication is that
multilevel methods are significantly less sensitive to the choice of degree than single-
level methods, whose cost for a fixed number of samples grows proportionally to n.
Various authors [17, 1, 8] derive error bounds for specific functions that make recom-
mendations for the degree n and number of samples m. Although these theoretical
bounds are not necessarily tight (particularly for m), our results suggest that when
using multilevel methods there is little downside to choosing n conservatively.

Fig. 5.3. Performance as the approximation degree n changes. Left: approximate standard
errors. Right: median relative errors over 100 trials.

5.3. SuiteSparse test cases. Here we show results for the multilevel method
and single-level method on a variety of test cases drawn from the SuiteSparse matrix
collection. We generally set the degree n large enough to allow for 3-4 digits of
precision in the estimate.

The most promising results for the multilevel method are when estimating the
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Matrix Exact norm n
Multilevel Single Level

Estimate std Estimate std
California 3803.74 100 3800.78 3.46 3802.04 10.82
FA 1306.80 300 1306.55 0.44 1305.26 1.48
Erdos02 3478.23 100 3481.65 5.03 3492.99 15.31
fe_4elt2 22677.4 70 22677.1 6.68 22726.3 30.05
deter3 16518.1 70 16514.5 3.19 16501.0 11.45
uberke1 7641.44 20 7637.79 4.69 7620.45 11.75

Table 5.3
Nuclear norm estimates with m = 50 and mpilot = 10.

Matrix Exact logdet n
Multilevel Single Level

Estimate std Estimate std
thermomechTC -546787 75 -546784 9.36 -546805 30.9
boneS01 1.1039e6 150 1.1040e6 25.7 1.1039e6 77.4
ecology2 3.3943e6 60 3.3933e6 158 3.3935e6 229
thermal2 1.3869e6 100 1.3864e6 182 1.3870e6 266

Table 5.4
Log-determinant estimates with m = 30 and mpilot = 5.

nuclear norm, shown in Figure 5.3. The singular values of all of these test matrices
are available in the SuiteSparse database, and the exact norms are computed using
these values. For matrices with low numerical rank such as California, we follow the
procedure recommended in [1] and compute the nuclear norm of AT A+λI, where λ is
a small regularization term. This procedure does not change the norm by much, but
it does circumvent the problem of the square root function being nondifferentiable
at x = 0. The single-level method takes 50 samples for each test case, and given
an equivalent computational budget our multilevel method delivers estimates whose
standard errors are smaller by a factor of 2.5-4.5. Since the accuracy of an estimate
scales with the square root of the number of samples, these results suggest that a
multilevel approach could deliver estimates of quality comparable to the single level
method while lowering the cost by as much as an order of magnitude.

For the test cases estimating the log determinant (Figure 5.4), the exact values
are taken from [18], in which the values are computed using a Cholesky factorization.
Here, results are somewhat more modest–the single level method uses 100 samples for
each test case, and for the same computational budget the multilevel method gives
estimates whose standard errors are smaller by a factor of 1.5-3.5.

For the test cases estimating the Estrada index (f(x) = exp(x), shown in Figure
5.5), the exact values are computed directly. Here, the multilevel method shows little
to no improvement over the single-level method. At least part of the reason is that
the spectra of these matrices are typically contained in a small interval, and so a
small degree n suffices to approximate the exponential function to high accuracy. We
observe that the multilevel method typically uses just two levels in this case, the
smaller of which was generally around n/2. Since the ratio between the lowest and
highest levels is small, the multilevel method had little chance to improve over the
single-level method.

In the case of the Estrada index, we also note that the standard errors for our
estimates are quite large. This is because the Estrada index of a matrix is dominated
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Matrix Exact index n
Multilevel Single Level

Estimate std Estimate std
fe_4elt2 2.2737e5 15 2.272e5 5.88e2 2.261e5 8.89e2
Erdos02 1.6705e11 20 2.206e11 2.31e10 2.303e11 2.50e10
Roget 2.3797e5 20 2.113e5 1.53e4 2.378e5 2.37e4

Table 5.5
Estrada index estimates with m = 100 and mpilot = 10.

by its largest eigenvalues, to a far greater extent than the nuclear norm or log deter-
minant. As a result, it will be particularly helpful to apply the variance reduction
methods of [3] when estimating the Estrada index.

5.4. Graph triangle counting. If A is the adjacency matrix for an undirected
graph, the number of triangles in the graph is known to be equal to tr(A3)/6. We
could apply multilevel techniques to estimate this quantity, but it is simpler to just
use a control variate instead. For any real numbers a1 and a2, we have that

tr(A3) = tr(A3 − a2A2 − a1A) + a1 tr(A) + a2 tr(A2)
= E[zT (A3 − a2A2 − a1A)z] + a2 nnz(A).

The quantities a1 and a2 can then be chosen to minimize the standard deviation of
zT (A3−a2A2−a1A)z. These quantities could be chosen a priori using the Chebyshev
expansion of x3, but for our experiments we compute and store the values z(i)T Ajz(i)

for 1 ≤ i ≤ m and 1 ≤ j ≤ 3, then find a1 and a2 through linear regression. The
added cost is minimal—in particular, no extra matvecs with A are required.

We test this variance reduction method on ca-GrQc and wiki-Vote, two standard
test graphs. Results are shown in Figure 5.4, where we report the median relative
error over 100 trials along with the 25th and 75th percentile errors. We find that the
benefit of using control variates is fairly modest, typically reducing the relative error
by around 30% in the first case and 20% in the second. Nonetheless, this method is
both simple to implement and inexpensive, so there appears to be little drawback to
using it.

Fig. 5.4. Triangle counting with f(A) = 1
6 A3. Left: ca-GrQc, an ArXiv.org collaboration

network. Right: wiki-Vote, a Wikipedia administrator voting network.

In theory, we could use these same control variates to estimate the trace of poly-
nomials pn(A) of larger degree, such as when approximating the nuclear norm. It
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is simple to compute tr(Aj) or tr(Tj(A)) for 0 ≤ j ≤ 2, so these low-degree terms
may effectively be removed from our variables Q`′` in (3.1). When the degree of the
matrix polynomial is large, however, the coefficients of pn will decay more slowly and
so the effect of using control variates will likely be fairly small.

6. Conclusion. In this paper, we have shown how multilevel techniques can be
used to improve existing methods for stochastic trace estimation. We have derived
general error bounds for our multilevel trace estimator, and through numerical exper-
iments have demonstrated the efficacy of the multilevel estimator as compared with
single-level methods.

One avenue for further study is in deriving multilevel error guarantees that are
specific to the function f , such as those for single-level methods in [8, 1, 17]. Another
possibility is to explore whether other variance reduction techniques for Monte Carlo
methods might find applications in stochastic trace estimation problems: for example,
tools for modeling rare events could potentially be used to determine whether a given
matrix is positive definite, a problem which trace estimation is used to solve in [8].
Our hope is that this paper will encourage further exploration in these directions.
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