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Let A and B be m × n and m × d matrices, and let X̃ be 
an approximate solution to the problem minX ‖AX−B‖F . In 
1996, Sun found an explicit expression for the optimal back-
ward error—the size of the smallest perturbation to A (and 
possibly B) such that X̃ is an exact solution to the perturbed 
problem. The expression requires finding the difference of two 
potentially close numbers, and so its numerical evaluation can 
be unstable. We offer an estimate of the backward error that 
can be evaluated stably and when d = 1 is identical to the 
Karlson-Waldén estimate of 1997. We prove that this estimate 
always approximates the optimal backward error to within a 
factor of 

√
2.
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1. Introduction

Let X̃ ∈ Cn×d be an approximate solution to the problem

min
X

‖AX −B‖F , (LS)
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where A ∈ Cm×n and B ∈ Cm×d. One method for evaluating the quality of X̃ as a 
solution is to find the smallest perturbation to A (and possibly B) such that X̃ solves 
the perturbed problem exactly. The optimal backward error μ(X̃, τ) is thus defined in 
[1] as

μ(X̃, τ) := min{‖[E, τG]‖F : X̃ minimizes ‖(A + E)X − (B + G)‖F }, (1)

where τ ∈ (0, ∞]. If τ = ∞, only perturbations to A are permitted.
In 1995, Waldén, Karlson, and Sun [2] found an exact formula for μ(x̃, τ) in the case 

where X̃ = x̃ and B = b have only a single column (i.e., d = 1), and Higham [3, (20.21)]
proposed a stable method for computing it. There are several known estimates in the 
case d = 1, including a few cheaply computable upper bounds [4,5]. The most accurate 
of these estimates is the Karlson-Waldén estimate ν(x̃, τ) [6, Eqn. 2.6], which in 2012 
Gratton et al. [7] proved will always approximate μ(x̃, τ) to within a factor of 

√
2.

In 1996, Sun [1] gave a general formula for μ(X̃, τ). He observed that the formula 
required computing the difference of two potentially close numbers, and that its numerical 
evaluation could therefore be unstable [1, §5.1]. To the best of our knowledge, no stable 
method for computing μ(X̃, τ) has been discovered for d > 1.

In this paper we extend the Karlson-Waldén estimate to the general case d ≥ 1 (21), 
and offer a stable method for computing it (17) that generalizes the expression in [8, 
(2.1)]. As was done for d = 1, we prove (Theorem 4.8) that our estimate always ap-
proximates the backward error to within a factor of 

√
2. Although the problem of stably 

computing μ(X̃, τ) remains open, the backward error can thus at least be stably approx-
imated.

1.1. Notation

If a matrix A has the compact SVD UΣV ∗, then the projection onto the column 
space of A is denoted by ΠA = UU∗ and the pseudoinverse of A by A† = V Σ−1U∗. 
The nuclear norm of A is denoted by ‖A‖∗. For a symmetric matrix S with eigensystem 
S =

∑
i λiqiq

∗
i , let S− =

∑
λi<0 λiqiq

∗
i .

2. Formulas and estimates for d = 1

In this section we provide an overview of existing formulas and estimates for the least-
squares backward error in the case d = 1, which has received the most attention. In 1995, 
Waldén, Karlson, and Sun [2] showed that

μ(x̃, τ) =
(
ω2 + min

{
0, λmin

(
AA∗ − ω2rr†

)})1/2
, (2)

where r = b −Ax̃ and ω is defined by Rigal and Gaches [9] as
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ω(x̃, τ) = min
E,g

{‖[E, τg]‖F : (A + E)x̃ = b + g} (3)

= ‖r‖2√
τ−2 + ‖x̃‖2

2
. (4)

Noting that formula (2) was “mathematically elegant, . . . [but] not suitable for compu-
tation”, Waldén et al. [2] offered the alternative formulation

μ(x̃, τ) = min
{
ω, σmin

([
A,ω(I − rr†)

])}
.

This expression nominally involves the computation of the smallest singular value of an 
m × (m +n) matrix, but Karlson and Waldén showed in [6, Lemma 3.1] that with a QR 
factorization of A it can be reduced to the problem of finding the smallest singular value 
of an (n + 1) × 2n matrix.

In 1975 and 1977, Stewart [4,5] gave the respective backward perturbations

E0 = rx̃∗

‖x̃‖2
2
, ‖E0‖F = ‖r‖2

‖x̃‖2
, E1 = (ΠAr)x̃∗

‖x̃‖2
2

, ‖E1‖F = ‖ΠAr‖2

‖x̃‖2

and

E2 = −rr∗A

‖r‖2
2
, ‖E2‖F = ‖A∗r‖2

‖r‖2
.

By modifying E0 and E1 to handle cases where τ < ∞, we may define

μ0 := ω, μ1 := ω
‖ΠAr‖2

‖r‖2
, μ2 := ‖A∗r‖2

‖r‖2
,

where ω = ω(x̃, τ) in (4). All of these quantities are upper bounds on μ(x̃, τ), and μ0
and μ2 are used in practice as stopping rules for iterative least-squares solvers such as 
LSQR and LSMR [10,11]. In 2013, Gratton et al. [12] showed that while min{μ1, μ2} is 
often close to μ, it can also overestimate the error by a factor as large as the square root 
of the condition number of A.

In 1997, Karlson and Waldén [6] proposed the estimate

ν(x̃, τ) := ω‖(A∗A + ω2I)−1/2A∗r‖2/‖r‖2 = ω

‖r‖2

∥∥∥∥∥
[
A
ωI

] [
A
ωI

]† [
r
0

]∥∥∥∥∥
2

, (5)

where ω = ω(x̃, τ) as before. In the subsequent years various authors [13,14,8,15] worked 
to prove or experimentally verify bounds on the accuracy of this estimate. The tightest 
known bounds were given in 2012 by Gratton et al. [7], who proved that the bounds

1 ≤ μ(x̃, τ) ≤
√

1 + ‖ΠAr‖2
2/‖r‖2

2 ≤
√

2 (6)

ν(x̃, τ)
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always hold. If r = 0, then μ(x̃, τ) = ν(x̃, τ) = 0. If r �= 0 but b is in the column space 
of A, then ‖ΠAr‖2/‖r‖2 = 1. If b is not in the column space of A, then

lim
AT r→0

‖ΠAr‖2

‖r‖2
= 0.

Thus ν(x̃, τ) is always a good estimate of μ(x̃, τ), and the estimate becomes increasingly 
accurate as x̃ converges to the true solution, provided the system is inconsistent.

3. Sun’s results

Here we summarize Sun’s main theorems from [1], with somewhat modified notation. 
The first theorem covers the case where only perturbations to A are permitted, but X̃
has full column rank. The second theorem is a generalization of the first, allowing X̃ to 
have any rank. The third theorem applies whenever perturbations to B are permitted.

Theorem 3.1. Let A ∈ Cm×n, B ∈ Cm×d, and X̃ ∈ Cn×d with rank(X̃) = d. Let 
R = B −AX̃, and define N = RX̃†. Then

μ(X̃,∞) =
[
‖N‖2

F + Tr(AA∗ −NN∗)−
]1/2

. (7)

If d = 1 then N = rx̃†, in which case (7) is equivalent to (2). Since Tr(AA∗−NN∗)− is 
equal to the sum of the negative eigenvalues of (AA∗−NN∗), evaluating the right-hand 
side may be unstable if ‖N‖F is much larger than μ(X̃, ∞).

If X̃ does not have full column rank, the formula becomes slightly more complicated.

Theorem 3.2. Let A ∈ Cm×n, B ∈ Cm×d, and X̃ ∈ Cn×d. Define R = B − AX̃, 
N = RX̃†, and M = B(I − X̃†X̃). Then

μ(X̃,∞) =
[
‖ΠMA‖2

F + ‖N̄‖2
F + Tr(ĀĀ∗ − N̄N̄∗)−

]1/2
, (8)

where Ā = (I − ΠM )A and N̄ = (I − ΠM )N .

Some commentary on the importance of the rank of X̃: Sun notes that if X̃ does not 
have full column rank, then we may without loss of generality write X̃ = [X̃1, 0] where 
X̃1 has full column rank. We may correspondingly split B = [B1, B2]. It follows that a 
backward perturbation E is valid iff

(A + E)∗[B1 − (A + E)X̃1] = 0 and (A + E)∗B2 = 0. (9)

Defining R1 = B1 − AX̃1, we find that N = R1X̃
†
1 and M = [0, B2]. The appearance of 

the term ‖ΠMA‖F in (8) is therefore due to the second constraint in (9).
We present an example to illustrate the significance of the terms Ā and N̄ in (8).
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Example 3.3. Let

A =
[
1
0

]
, X̃ = [1] , and B =

[
2
1

]
.

It follows from (7) that μ(X̃, ∞) =
√

5−1
2 ≈ 0.618. The optimal backward perturbation 

is E =
[
0, 1−

√
5

2

]∗
.

By contrast, let

A =
[
1
0

]
, X = [1 0] , and B =

[
2 0
1 1

]
.

It follows from (8) that μ(X̃, ∞) = 1. The optimal backward perturbation is E =
± [1, 0]∗. Even though A∗B2 = 0, the backward error is different because the optimal 
perturbation must satisfy the constraint (A + E)∗B2 = 0.

The third theorem applies when perturbations to B are permitted, in which case X̃
may have arbitrary rank.

Theorem 3.4. Let A ∈ Cm×n, B ∈ Cm×d, X̃ ∈ Cn×d, and τ ∈ (0, ∞). Let R = B −AX̃

and define X̃τ = [X̃∗, 1τ I]
∗ and Nτ = RX̃†

τ . Then

μ(X̃, τ) =
[
‖Nτ‖2

F + Tr(AA∗ −NτN
∗
τ )−

]1/2
. (10)

Sun notes that when X̃ has full column rank, μ(X̃, ∞) = limτ→∞ μ(X̃, τ).

4. Extending the Karlson-Waldén estimate

In order to derive our extension of the Karlson-Waldén estimate, we focus on reliably 
estimating the quantity μ̂(A, N) defined by

μ̂(A,N) :=
[
‖N‖2

F + Tr(AA∗ −NN∗)−
]1/2 (11)

for arbitrary matrices A ∈ Cm×n and N ∈ Cm×p. Here we use N to emphasize the 
connection to μ(X̃, τ) via the relation N = RX̃†. We begin with the following lemma, 
which holds for matrices of arbitrary rank and dimension.

Lemma 4.1. For matrices A ∈ Cm×n and N ∈ Cm×p, A∗N = 0 iff there is a matrix Y
such that A∗Y = 0 and (I − Y Y †)N = 0.

Proof. If A∗N = 0 then choose Y to have the same column space as N . Conversely, if 
Y exists, then A∗N = (A∗Y Y †)N + A∗((I − Y Y †)N) = 0. �
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This lemma allows us to reformulate μ̂(A, N) in a useful way.

Theorem 4.2. Let A ∈ Cm×n and N ∈ Cm×p. Then

μ̂(A,N) = min
E,F

{‖[E,F ]‖F : (A + E)∗(N + F ) = 0}. (12)

Proof. By the preceding lemma, we can rewrite the square of the right-hand side of (12)
as

min
Y,E,F

{‖[E,F ]‖2
F : (A + E)∗Y = 0 and (I − Y Y †)(N + F ) = 0}.

For fixed Y the optimal perturbations are E = −Y Y †A and F = −(I − Y Y †)N , and 
this minimization problem may therefore be further reduced to the problem

min
Y

‖Y Y †A‖2
F + ‖(I − Y Y †)N‖2

F . (13)

From the properties of the trace function and Frobenius norms, it follows that

min
Y

‖Y Y †A‖2
F + ‖(I − Y Y †)N‖2

F = min
Y

TrY †AA∗Y + TrN∗(I − Y Y †)N

= ‖N‖2
F + min

Y
TrY †(AA∗ −NN∗)Y

= ‖N‖2
F + Tr(AA∗ −NN∗)−

= μ̂2(A,N).

Taking square roots then gives the desired result. �
From the proof above, it can be seen that the optimal perturbations E and F naturally 

satisfy E∗F = 0. By rearranging the right-hand side of (12), we obtain

μ̂(A,N) = min
E,F

{‖[E,F ]‖F : A∗F + E∗N = −A∗N and E∗F = 0}.

By removing the constraint E∗F = 0, we can obtain a lower bound on μ̂(A, N). We 
define ν̂(A, N) to be the solution to this relaxed problem:

ν̂(A,N) := min
E,F

{‖[E,F ]‖ : A∗F + E∗N = −A∗N}. (14)

Thus ν̂(A, N) ≤ μ̂(A, N) by construction.
If the singular value decompositions of A and N are UΣV ∗ and WΛZ∗, the optimal 

E and F may be written as WÊ∗V ∗ and UF̂Z∗, and so

ν̂(A,N) = min
ˆ ˆ

{‖[Ê, F̂ ]‖F : ΣF̂ + ÊΛ = −Σ(U∗W )Λ}. (15)

E,F
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If A and N have ranks rA and rN , both Ê and F̂ will be rA × rN matrices. Computing 
their entries one coordinate at a time gives

Êij = −σ2
i λj(u∗

iwj)
σ2
i + λ2

j

and F̂ij =
−σiλ

2
j (u∗

iwj)
σ2
i + λ2

j

,

and therefore

ν̂(A,N) =

⎡
⎣ rA∑

i=1

rN∑
j=1

σ2
i λ

2
j

σ2
i + λ2

j

(u∗
iwj)2

⎤
⎦

1/2

(16)

=

⎡
⎣ rN∑
j=1

λ2
j

∥∥∥(Σ2 + λ2
jI)−1/2ΣU∗wj

∥∥∥2

2

⎤
⎦

1/2

(17)

=

⎡
⎣ rN∑
j=1

λ2
j

∥∥∥(A∗A + λ2
jI)−1/2A∗wj

∥∥∥2

2

⎤
⎦

1/2

(18)

Remark 4.3. The expression in (17) generalizes an expression found in [8, (2.1)] and 
elsewhere. It is a sum of nonnegative quantities and may therefore be computed stably, 
at least to the extent that the products U∗wj can be computed accurately.

Remark 4.4. When d = 1, the matrix N = rx̃†
τ has rank one. Then λ1 = ‖r‖2/‖x̃τ‖2 =

ω(x̃, τ) and w1 = r/‖r‖, and it follows from (18) that

ν̂(A,N) = ω‖(A∗A + ω2I)−1/2A∗r‖2/‖r‖2, (19)

which coincides with the definition of ν(x̃, τ) in (5). This justifies our calling ν(X̃, τ)
(Definition 4.6 below) an extension of the Karlson-Waldén estimate.

4.1. Definition of the Karlson-Waldén estimate

We may use the definition of ν̂(A, N) (14) to obtain an estimate ν(X̃, τ) for the 
backward error μ(X̃, τ). First, we condense Sun’s results to a single theorem.

Theorem 4.5. Let A ∈ Cm×n, B ∈ Cm×d, X̃ ∈ Cn×d, and τ ∈ (0, ∞]. Let R = B −AX̃

and define X̃τ = [X̃∗, 1τ I]
∗, Nτ = RX̃†

τ , and M = R(I − X̃†
τ X̃τ ). Then

μ(X̃, τ) =
[
‖ΠMA‖2

F + μ̂2(Ā, N̄τ )
]1/2

, (20)

where Ā = (I − ΠM )A and N̄τ = (I − ΠM )Nτ .
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We then obtain the definition of ν(X̃, τ) by replacing the term μ̂(Ā, N̄τ ) in (20) with 
its estimate ν̂(Ā, N̄τ ).

Definition 4.6. With the notation used in Theorem 4.5, and ν̂ defined as in (14),

ν(X̃, τ) :=
[
‖ΠMA‖2

F + ν̂2(Ā, N̄τ )
]1/2

. (21)

Note that if X̃ has full column rank or if τ < ∞, then M = 0, Ā = A, and N̄τ = Nτ .

4.2. Accuracy of the Karlson-Waldén estimate

Here we prove that the Karlson-Waldén estimate is always a good estimate of μ(X̃, τ). 
We do so by proving that ν̂(A, N) (14) is always a good estimate of μ̂(A, N) (12), and 
the corresponding result for ν(X̃, τ) follows almost immediately.

Theorem 4.7. For any matrices A and N ,

1 ≤ μ̂(A,N)
ν̂(A,N) ≤

√
1 + ‖ΠAΠN‖2 ≤

√
2.

Proof. The first inequality is true by the way ν̂(A, N) was defined. To establish the 
second inequality, we note that it follows from (11) that

μ̂(A,N) = μ̂

([
A
0

]
,

[
N
0

])
. (22)

Let (E, F ) be such that A∗F + E∗B = −A∗B and ‖[E, F ]‖F = ν̂(A, N). Then if GE

and GF are chosen to satisfy G∗
EGF = −E∗F , the pair 

([
E
GE

]
,

[
F
GF

])
will be a valid 

backward perturbation to the augmented problem (22), implying that

μ̂2(A,N) ≤ ‖[E,F ]‖2
F + ‖[GE , GF ]‖2

F .

The pair (GE , GF ) with smallest norm satisfies ‖[GE , GF ]‖2
F = 2‖E∗F‖∗ [16, Lemma 

5.1]. The optimal E and F satisfy E = ΠNE and F = ΠAF , and so by a generalized 
version of Holder’s inequality for Schatten norms [17, §3] we find that

‖E∗F‖∗ = ‖E∗ΠNΠAF‖∗ ≤ ‖E∗ΠNΠA‖F ‖F‖F ≤ ‖ΠAΠN‖2‖E‖F ‖F‖F .

By the RMS-GM inequality, 2‖E‖F ‖F‖F ≤ ‖[E, F ]‖2
F . Therefore,

μ̂2(A,N) ≤ (1 + ‖ΠAΠN‖2)‖[E,F ]‖2
F = (1 + ‖ΠAΠN‖2)ν̂2(A,N),

and the desired inequality follows. The final inequality of the theorem holds because 
‖ΠAΠN‖2 ≤ 1. �
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Using the formula for μ(X̃, τ) from (20) and the definition of ν(X̃, τ) from (21), we 
get our main result.

Theorem 4.8. Let A ∈ Cm×n, B ∈ Cm×d, X̃ ∈ Cn×d, and τ ∈ (0, ∞]. Then

1 ≤ μ(X̃, τ)
ν(X̃, τ)

≤
√

1 + ‖ΠĀΠN̄τ
‖2 ≤

√
2,

where Ā and N̄τ are defined as in Theorem 4.5.

This bound is slightly weaker than the one from (6) given by Gratton et al. [7], 
but still strong enough to show that the estimate ν(X̃, τ) is increasingly accurate as 
‖ΠĀΠN̄τ

‖2 → 0. In particular, we get the following corollary.

Corollary 4.9. For A ∈ Cm×n and B ∈ Cm×d, let Xopt be any solution to (LS) and let 
Ropt = B −AXopt. If X̃ is constrained so that rank(R) = rank(Ropt), then

lim
X̃→Xopt

μ(X̃, τ)
ν(X̃, τ)

= 1

for any τ ∈ (0, ∞).

Proof. Since τ < ∞, X̃τ has full column rank. Therefore, N̄τ = Nτ = RX̃†
τ , and so 

ΠNτ
= ΠR. Since R has the same column rank as Ropt by assumption, it follows that 

ΠR converges to ΠRopt as X̃ converges to Xopt. Since A∗Ropt = 0, we conclude that

lim
X̃→Xopt

ΠAΠNτ
= 0,

and the corollary then follows from Theorem 4.8. �
5. Simple backward error bounds

In the minimization problem (13) each choice of a matrix Y yields a particular back-
ward perturbation, and by extension an upper bound on the backward error. Assuming 
for simplicity that X̃ has full column rank, the choices Y = 0, ΠY = (I − ΠA), and 
ΠY = ΠR correspond to the respective perturbations

[E0, τG0] = Nτ = RX̃†
τ , [E1, τG1] = ΠANτ = ΠARX̃†

τ ,

and

[E2, τG2] = [−ΠRA, 0] = [−RR†A, 0].
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These are the natural extensions of Stewart’s perturbations from Section 2. In particular, 
the pair (E0, G0) is the optimal backward perturbation for the consistent problem AX =
B and arises in the context of the total least squares problem [18].

6. Practical computation of ν(X̃, τ )

Although we describe our estimate ν(X̃, τ) in terms of ν̂(A, Nτ ), it is not necessary to 
compute Nτ explicitly. This fact is reflected in Sun’s original formulas for μ(X̃, τ), which 
used the m × d matrix τR(I + τ2X̃∗X̃)−1/2 in place of the m × n matrix Nτ = RX̃†

τ .
Nor is it necessary to compute the SVD of A, despite the form of (17). Instead, we 

can compute the singular values Λ and left singular vectors W of Nτ , then use the close 
relation between formulas (18) and (5). From there, Chapter 2 of Zheng Su’s thesis [8]
discusses in detail methods for computing the Karlson-Waldén estimate when d = 1. If 
A is sparse then it is possible to use sparse QR methods to compute (18). If A is too 
large to permit direct methods, it is possible to use LSQR [10] or LSMR [11] to do the 
same.

We emphasize that formula (18) is not equivalent to computing the Karlson-Waldén 
estimate for each column of (LS), as the following example illustrates.

Example 6.1. Let

A =
[
1 0
0 1

]
, X̃ =

[
1 1
1 1 + ε

]
, and B =

[
1 1
1 1

]
,

where ε is a small nonzero number. If we consider the backward error for each column 
individually, then the error for the first column is zero and the error for the second 
column is O(ε). If we consider the backward error for the entire system, however, we 
find that

N = RX† =
[
0 0
1 −1

]
=

[
0√
2

]
︸ ︷︷ ︸
λ1w1

[
√

2/2, −
√

2/2],

and it follows from (7) and (18) that μ(X̃, ∞) = 1 and ν(X̃, ∞) =
√

2/3.

Remark 6.2. In the case d = 1, taking b = 0 and x̃ �= 0 gives results similar to those in 
the above example. One general conclusion we may draw is that if rank(X̃) > rank(B)
then the approximate solution X̃ is fundamentally flawed.

Remark 6.3. If we consider X̃ as a function of ε in the example above, then

lim
ε→0

μ(X̃,∞)˜ =
√

3/2 �= 1.

ν(X,∞)
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The example therefore also demonstrates the importance of the condition that rank(R) =
rank(Ropt) in Corollary 4.9.

Finally, in the event that rank(X̃) < d and τ = ∞, it is not necessary to compute 
Ā = (I − ΠM )A explicitly in order to evaluate formula (21). Using Su’s work [8, §2.6], 
we may rewrite (18) as

ν̂(Ā, N̄τ ) =

⎡
⎣ rN∑
j=1

∥∥∥∥
[

Ā
λjI

]
yj

∥∥∥∥2

2

⎤
⎦

1/2

,

where each yj solves the least-squares problem

min
y

∥∥∥∥
[

Ā
λjI

]
y −

[
λjwj

0

]∥∥∥∥
2
. (23)

In this case, Λ and W are the singular values and left singular vectors of N̄τ = (I −
ΠM )Nτ .

If we use an iterative method such as LSQR or LSMR to solve (23), we do not 
need to form Ā = (I − ΠM )A explicitly, but only need to compute products of the 
form Āv = (I − ΠM )Av and ĀTu = AT (I − ΠM )u. The method outlined above still 
requires us to compute the singular values and left singular vectors of (I −ΠM )Nτ , but 
if d � min{m, n} then doing so will be inexpensive compared to the cost of forming Ā.
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