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SHARP 2-NORM ERROR BOUNDS FOR LSQR AND THE
CONJUGATE GRADIENT METHOD\ast 
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Abstract. We consider the iterative method LSQR for solving minx \| Ax - b\| 2. LSQR is based
on the Golub--Kahan bidiagonalization process and at every step produces an iterate that minimizes
the norm of the residual vector over a Krylov subspace \scrK k. The 2-norm of the error is known to
decrease monotonically, although it is not minimized over \scrK k. Given a lower bound on the smallest
singular value of A, we show that in exact arithmetic the solution lies in the interior of a certain
ellipsoid and that the LSQR iterate lies on the boundary of this ellipsoid. We use this result to derive
new 2-norm error bounds for LSQR. Although our bounds are not much smaller than the existing
ones, we show that they are sharp in the following sense: if the only information we use is our
lower bound on \sigma min(A) plus the information gained by running k steps of LSQR, then our bounds
cannot be improved. We also show how to choose a point with an error bound smaller than our
corresponding bound for the LSQR error, although its true error is not necessarily smaller than the
true LSQR error. As LSQR is formally equivalent to the conjugate gradient (CG) method applied
to the normal equations ATAx = AT b, we derive analogous error bounds for CG. Our bounds for
CG apply to any system Ax = b where A is symmetric positive definite.

Key words. LSQR, least-squares problem, sparse matrix, Krylov subspace method, Golub--
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1. Introduction. We examine LSQR [21], an iterative method for solving the
least-squares problem

min
x

\| Ax - b\| 2(LS)

for a matrix A \in \BbbR m\times n and vector b \in \BbbR m. We require A only to compute matrix-
vector products of the form Av and ATu, and these matrix-vector products typically
dominate the cost of the algorithm.

LSQR is based on a bidiagonalization process by Golub and Kahan [8, eq. (2.4)].1

Assuming xQ
0 = 0, LSQR produces an iterate xQ

k at the kth step that minimizes the

residual norm \| rQk \| 2 := \| b - AxQ
k \| 2 over the Krylov subspace

\scrK k

\bigl( 
ATA,AT b

\bigr) 
= Span

\Bigl\{ 
AT b,

\bigl( 
ATA

\bigr) 
AT b, . . . ,

\bigl( 
ATA

\bigr) k - 1
AT b

\Bigr\} 
.

In exact arithmetic, it will terminate in at most min\{ m,n\} steps and return

x\ast := A\dagger b,

\ast Received by the editors July 5, 2019; accepted for publication (in revised form) by D. Orban
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1The paper by Golub and Kahan introduces multiple methods for reducing a matrix A to a

bidiagonal matrix. The one we refer to is an iterative procedure often called the Golub--Kahan--
Lanczos method, which we will call the Golub--Kahan process.
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1184 ERIC HALLMAN

the minimum-norm solution to the least-squares problem. This will often fail to
happen in practice due to roundoff errors, so we are interested in monitoring the error
\| xQ

k  - x\ast \| 2 in order to know when the algorithm may be safely halted.
In exact arithmetic, LSQR is equivalent to running the conjugate gradient (CG)

method [12] on the normal equations ATAx = AT b. We therefore simultaneously
consider using CG to solve the problem

\=Ax = \=b,(SPD)

where \=A is an arbitrary symmetric positive definite (SPD) matrix. As was the case
with previous work in bounding the error for LSQR (resp., CG) [4, 9, 14, 15, 7], we

require a nontrivial lower bound \~\sigma \leq \sigma min(A) (resp., \~\sigma \leq 
\sqrt{} 
\lambda min( \=A)).

It is known that the iterates xQ
k for LSQR (and CG) are updated along positively

correlated directions (i.e., if xQ
k = xQ

k - 1 + pk, then pTi pj > 0 for all i and j) and
therefore that the 2-norm of the error decreases monotonically [12, Thms. 5:3, 6:3],
although it is not minimized over \scrK k(A

TA,AT b). Recently, Estrin, Orban, and Saun-
ders [4] developed an error estimate that took advantage of these properties. Building
on work by Golub and Meurant [9] and Meurant [14, 15], they showed how to use \~\sigma 
to cheaply compute an upper bound on \| x\ast \| 2 and used it to derive an upper bound
on the LSQR error [4, sect. 4.2]. In the same paper they developed the algorithm
LSLQ as an auxiliary to LSQR, allowing their error estimate to be computed more
stably. As LSLQ is equivalent to SYMMLQ [19] run on the normal equations, this
paper paralleled their earlier work in using SYMMLQ to estimate the CG error [2].

Work by Meurant, Tich\'y, and others (see [17, eq. (6)] and the references there)
used \~\sigma to compute an upper bound for the A-norm of the CG error. This bound may
be used to derive the 2-norm error bound\bigm\| \bigm\| xCG

k  - x\ast 
\bigm\| \bigm\| 
2
\leq 1

\~\sigma 

\bigm\| \bigm\| xCG
k  - x\ast 

\bigm\| \bigm\| 
\=A
<

| \~\phi k+1| 
\~\sigma 

,(1.1)

where \~\phi k+1 is a cheaply computable quantity depending on \~\sigma .

1.1. Summary of main results. In this paper we improve the existing error
bounds for LSQR and CG. We start by identifying at each step k a point \~xk+1, whose
value depends on \~\sigma , such that the bound given by Estrin, Orban, and Saunders [4,
Thm. 4] may be written (Theorem 3.1) in the form

\| x\ast \| 2 \leq \| \~xk+1\| 2.

Although we cannot exactly find the error-minimizing points

x\ast 
k := argmin

x\in \scrK k(ATA,AT b)

\| x - x\ast \| 2,(1.2)

we show (Corollary 3.3) that x\ast 
k+1 is a convex combination of xQ

k and \~xk+1. Further-

more, we show (Theorem 3.4) that the solution x\ast = A\dagger b lies in an ellipsoid centered
at the point

\~x\scrE 
k+1 :=

1

2

\Bigl( 
xQ
k + \~xk+1

\Bigr) 
.

In the least-squares case, we also show that x\ast 
k+1 is a convex combination of xQ

k and

the iterate xG
k+1 from a related algorithm known as Craig's method [5, 18, 21]. These

bounds are illustrated in Figures 3.1 and 3.2.
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SHARP 2-NORM ERROR BOUNDS FOR LSQR AND CG 1185

We use these results to derive a new error bound for general points in the Krylov
subspace (equation (3.24)) and in particular new error bounds for LSQR and CG
(section 3.5). We also find (equation (3.25)) that the point \~x\scrE 

k+1 yields the error
bound \bigm\| \bigm\| \~x\scrE 

k+1  - x\ast 
\bigm\| \bigm\| 
2
\leq | \~\phi k+1| 

2\~\sigma 
,

which is precisely a factor of 2 smaller than the bound in (1.1).
More importantly, we demonstrate (Theorem 3.8) that our bounds are sharp.

Specifically, we are interested in error bounds that satisfy two properties:
\bullet They rely only on \~\sigma and the information gained from running LSQR or CG.
\bullet In exact arithmetic, they are provably upper bounds on the true error.

Of all such bounds, ours are the tightest possible. This result implies that future error
estimates should either use additional information about A and b or settle for being
estimates rather than guaranteed upper bounds.

We also assume exact arithmetic throughout. This approach limits the scope of
our paper, since the bidiagonalization process used by LSQR produces a sequence of
vectors that are orthogonal in exact arithmetic but may quickly lose that orthogonality
in practice. It also stands in contrast to prior works such as [17] which have derived
estimates that rely only on the local orthogonality of these vectors rather than global
orthogonality. Although numerical experiments suggest that our bounds are reliable
in practice, a more thorough exploration of how they behave in finite precision will
be left to future research.

1.2. Organization. Section 2 summarizes the Golub--Kahan process and some
of the relations between LSQR, CG, and Craig's method. Section 3 introduces our
new error bound, proves that it is sharp, and shows how to choose the point that will
minimize our error estimate. Section 4 discusses some limitations that our bounds face
in practice, and section 5 summarizes our main results in notation more common to
CG. Section 6 discusses regularization. Section 7 shows the results of some numerical
experiments, and section 8 offers our concluding remarks.

1.3. Notation. We use Householder notation in general, denoting matrices, vec-
tors, and scalars by A, a, and \alpha , respectively. One exception is in describing Givens
rotations, where c and s are used to denote the significant components of the rotation.
The vector ek always refers to the kth column of the identity matrix Id, where d can
be inferred from context. Writing the compact SVD of A as U\Sigma V T , we denote the
projection onto the column space of A by \Pi A = UUT and the pseudoinverse of A by
A\dagger = V \Sigma  - 1UT . The smallest nonzero singular value of A is denoted by \sigma min(A). If

M is a positive definite matrix, then \| v\| M =
\surd 
vTMv. The notation A \succeq B means

that A - B is positive semidefinite.
In this paper we discuss several closely related algorithms and use several QR

and QL factorizations. We use superscripts to distinguish the various algorithms, in
particular using xQ

k (and yQk , rQk , etc.) for quantities related to LSQR, xG
k for Craig's

method, and x\ast 
k for the iterate minimizing the 2-norm error over \scrK k. For a more

comprehensive list, see Figure 1.1. Typically, by ``the error"" of an iterate xk we mean
the quantity \| xk  - x\ast \| 2.

Diacritics ( \"Q, \^R) generally distinguish the QR (or QL) factorizations as well as
associated scalars (\"\theta , \^\rho ). The leading elements of the R factors do not change from
one iteration to the next, and transient elements will be denoted using prime notation.
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1186 ERIC HALLMAN

xQ
k The kth LSQR iterate.

rQk The LSQR residual b - AxQ
k .

Vk Spans the kth Krylov subspace: e.g., xQ
k = Vky

Q
k .

hk+1 Update direction from xQ
k to xQ

k+1, x
G
k+1, x

\ast 
k+1, \~xk+1, and \~x\scrE 

k+1.

xG
k The kth iterate from Craig's method.

x\ast The minimum-norm solution to LS. Defined by x\ast = A\dagger b.

x\ast 
k+1 The projection of x\ast onto the column space of Vk+1.

\scrE k+1 An ellipsoid that contains x\ast . Used to derive error bounds for (SPD).

\scrE (G)
k+1 Intersection of \scrE k+1 and a half-space related to Craig's method.

Used to derive error bounds for (LS).

\~xk+1 Lies on the boundary of \scrE k+1, opposite xQ
k . Satisfies \| x\ast \| 2 \leq \| \~xk+1\| 2.

\~x\scrE 
k+1 The center of \scrE k+1. Minimizes our error bound for (SPD).

\~x
\scrE (G)
k+1 Either \~x\scrE 

k+1 or xG
k+1, whichever has smaller norm.

Minimizes our error bound for (LS).

\~\sigma A lower bound for \sigma min(A).

\phi \ast 
k+1 Defined so that \| \Pi Ar

Q
k \| 2 = | \phi \ast 

k+1| . Related to the location of x\ast 
k+1.

\phi \prime 
k+1 In exact arithmetic, satisfies \| rQk \| 2 = | \phi \prime 

k+1| .
\~\phi k+1 In exact arithmetic, satisfies \| \Pi Ar

Q
k \| 2 \leq | \~\phi k+1| .

\~\rho k+1 Chosen so that \sigma min( \widetilde Rk+1) = \~\sigma . Used to compute \~xk+1 and \~x\scrE 
k+1.

\~ck+1 Equal to \~\phi k+1/\phi 
\prime 
k+1. If \~ck+1 < 1, the system must be inconsistent.

Fig. 1.1. Summary of notation appearing in this paper.

Such elements (\phi \prime 
k, \rho 

\prime 
k+1) will typically change into a related element (\phi k, \rho k+1) in

the next iteration. Quantities such as \widetilde R, \~x, \~\rho , \~\phi all depend on the lower bound \~\sigma , and
quantities such as \=A,\=b, \=r refer to (SPD) as opposed to (LS).

2. Background. We start with a short summary of the Golub--Kahan bidiago-
nalization process [8, eq. (2.4)], an iterative method originally designed to estimate
the singular values of a matrix A by reducing it to a lower bidiagonal matrix B. We
use this process to reproduce the derivations of LSQR and Craig's method, and to
introduce notation that will be used in the remainder of the paper.

2.1. The Golub--Kahan process. The Golub--Kahan process takes a matrix
A and vector b and after k steps produces orthogonal matrices Uk = [u1, . . . , uk] and
Vk = [v1, . . . , vk] such that

Span(Uk) = Span
\Bigl\{ 
b,
\bigl( 
AAT

\bigr) 
b, . . . ,

\bigl( 
AAT

\bigr) k - 1
b
\Bigr\} 
= \scrK k

\bigl( 
AAT , b

\bigr) 
,

Span(Vk) = Span
\Bigl\{ 
AT b,

\bigl( 
ATA

\bigr) 
AT b, . . . ,

\bigl( 
ATA

\bigr) k - 1
AT b

\Bigr\} 
= \scrK k

\bigl( 
ATA,AT b

\bigr) 
.

The process itself proceeds according to Algorithm 2.1. In the event that \alpha k+1 = 0 or
\beta k+1 = 0, the process terminates and we can solve the least-squares problem exactly.
The case \beta k+1 = 0 additionally implies that the system Ax = b is consistent.
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SHARP 2-NORM ERROR BOUNDS FOR LSQR AND CG 1187

Algorithm 2.1 Golub--Kahan bidiagonalization process

Require: A, b
1: \beta 1u1 = b  \triangleleft \beta 1 = \| b\| , u1 = b/\beta 1

2: \alpha 1v1 = ATu1  \triangleleft \alpha 1 = \| ATu1\| , v1 = ATu1/\alpha 1

3: for k = 1, 2, . . . do
4: \beta k+1uk+1 = Avk  - \alpha kuk

5: \alpha k+1vk+1 = ATuk+1  - \beta k+1vk
6: end for

By defining the lower bidiagonal matrices

Lk =

\left[     
\alpha 1

\beta 2 \alpha 2

. . .
. . .

\beta k \alpha k

\right]     , Bk =

\biggl[ 
Lk

\beta k+1e
T
k

\biggr] 
,

we can characterize the process at each iteration by the two relations

AVk = Uk+1Bk and ATUk+1 = Vk+1L
T
k+1,(2.1)

which remain accurate even in finite precision.

2.2. Subproblem for LSQR. At every iteration, each algorithm in this paper
produces an iterate from the space \scrK k(A

TA,AT b) = Span(Vk), and so (with x0 = 0)
their iterates may be written in the form xk = Vkyk for some yk \in \BbbR k. For LSQR,
the iterate xQ

k is chosen to minimize the residual norm \| rQk \| 2 at every step. Using
the first relation in (2.1), we find that for any xk \in Span(Vk) we have

rk = b - Axk = b - AVkyk = \beta 1u1  - Uk+1Bkyk = Uk+1(\beta 1e1  - Bkyk),

and so assuming the orthogonality of Uk+1 (which holds in exact arithmetic), it follows
that

min
xk=Vkyk

\| rk\| 2 = min
yk

\| Bkyk  - \beta 1e1\| 2 .(2.2)

Since Bk is a lower bidiagonal matrix, we can solve this problem efficiently by finding
its QR factorization.

2.3. QR factorization. The Q factor from the QR factorization of Bk can be
expressed as the product

Qk = Pk . . . P2P1,

where Pi is a plane rotation acting on rows i and i+ 1 of a given matrix and having
significant component [ ci si

 - si ci ].
2 The QR factorization then takes the form

Qk

\Bigl[ 
Bk \beta 1e1

\Bigr] 
=

\Biggl[ 
Rk fk

0 \phi \prime 
k+1

\Biggr] 
=

\left[         

\rho 1 \theta 2 \phi 1

\rho 2
. . . \phi 2

. . . \theta k
...

\rho k \phi k

\phi \prime 
k+1

\right]         
,(2.3)

2This involves an abuse of notation since at the kth step each matrix Pi will be (k+1)\times (k+1);
thus Pi does not have a single fixed size. The significant component of Pi, however, does not change.
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1188 ERIC HALLMAN

where the plane rotation Pk has the effect\biggl[ 
ck sk
 - sk ck

\biggr] \biggl[ 
\rho \prime k 0 \phi \prime 

k

\beta k+1 \alpha k+1 0

\biggr] 
=

\biggl[ 
\rho k \theta k+1 \phi k

0 \rho \prime k+1 \phi \prime 
k+1

\biggr] 
(2.4)

with \rho \prime 1 = \alpha 1 and \phi \prime 
1 = \beta 1. We will additionally use the notation

QkLk+1 = R\prime 
k+1 =

\biggl[ 
Rk \theta k+1ek
0 \rho \prime k+1

\biggr] 
,(2.5)

Qk(\beta 1e1) = f \prime 
k+1 =

\biggl[ 
fk

\phi \prime 
k+1

\biggr] 
(2.6)

so that R\prime 
k+1 and f \prime 

k+1 are identical to Rk+1 and fk+1 except in the final element.

2.4. Solution for LSQR. To solve the LSQR subproblem (2.2), we use the QR
factorization from (2.3) to find that for all xk \in Span(Vk),

\| rk\| 2 = \| Bkyk  - \beta 1e1\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ Rk

0

\biggr] 
yk  - 

\biggl[ 
fk

\phi \prime 
k+1

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

.

LSQR minimizes this expression by solving Rky
Q
k = fk and gives the residual norm

\| rQk \| 2 = | \phi \prime 
k+1| , although we do not need to compute either yQk or rQk explicitly.

If we solve RT
k W

T
k = V T

k by forward substitution and define wk to be the last
column of Wk, we get the recurrence relation

xQ
k = Vky

Q
k = VkR

 - 1
k fk = Wkfk = xQ

k - 1 + \phi kwk.

As mentioned in [21, sect. 4.1], it is computationally more efficient to define hk = \rho kwk

and use the recurrence

xQ
k = xQ

k - 1 +
\phi k

\rho k
hk.(2.7)

It turns out that using hk also makes our formulas slightly cleaner, so we will use hk

instead of wk for the remainder of the paper. The vector hk can be computed by the
recurrence

\theta k+1

\rho k
hk + hk+1 = vk+1,

where h1 = v1. Algorithm 2.2 provides pseudocode for LSQR, with only minor changes
from its presentation in [21].

2.5. Craig's method. Craig's method [21, sect. 7.2] solves the consistent sys-
tem Ax = b by using forward substitution to solve the problem

Lky
G
k = \beta 1e1.(2.8)

The leading coordinates of yGk do not change, and so xG
k = Vky

G
k updates along

orthogonal directions. This implies that Craig's method minimizes the error \| xk - x\ast \| 2
at each step, provided the system is consistent.

Craig's method and LSQR are respectively equivalent [3] to running CG and
MINRES on the normal equations

AAT y = b, x = AT y,
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SHARP 2-NORM ERROR BOUNDS FOR LSQR AND CG 1189

Algorithm 2.2 LSQR

Require: A, b
1: \beta 1u1 = b, \alpha 1v1 = ATu1

2: \phi \prime 
1 = \beta 1, \rho 0 = 1, \rho \prime 1 = \alpha 1

3: xQ
0 = 0, h1 = v1

4: for k = 1, 2, . . . do
5: \beta k+1uk+1 = Avk  - \alpha kuk  \triangleleft Continue the bidiagonalization
6: \alpha k+1vk+1 = ATuk+1  - \beta k+1vk

7: \rho k =
\bigl( 
\rho \prime 2k + \beta 2

k+1

\bigr) 1/2
 \triangleleft Construct and apply rotation Pk

8: ck = \rho \prime k/\rho k, sk = \beta k+1/\rho k
9: \theta k+1 = sk\alpha k+1, \rho 

\prime 
k+1 = ck\alpha k+1

10: \phi k = ck\phi 
\prime 
k, \phi 

\prime 
k+1 =  - sk\phi 

\prime 
k

11: xQ
k = xQ

k - 1 + (\phi k/\rho k)hk  \triangleleft Update h and xQ
k

12: hk+1 = vk+1  - (\theta k+1/\rho k)hk

13: end for

and as with CG and MINRES it is possible to cheaply transfer between the two. For
our purposes, it is simplest to consider the transfer from xQ

k to xG
k+1. Extending (2.8)

one iterate further and performing the QR factorization (2.5) implies that\biggl[ 
Rk \theta k+1ek
0 \rho \prime k+1

\biggr] 
yGk+1 =

\biggl[ 
fk

\phi \prime 
k+1

\biggr] 
and therefore, using the notation from (2.5) and (2.6), that

xG
k+1 = Vk+1R

\prime  - 1
k+1f

\prime 
k+1.

It follows that

xG
k+1 = Vk+1R

 - 1
k+1

\biggl[ 
fk

\rho k+1\phi 
\prime 
k+1/\rho 

\prime 
k+1

\biggr] 
= xQ

k +
\phi \prime 
k+1

\rho \prime k+1

hk+1.(2.9)

By (2.4), \phi k+1 and \phi \prime 
k+1 have the same sign. Comparing this transfer with the update

for xQ
k+1 from (2.7), we conclude that xQ

k , x
Q
k+1, and xG

k+1 are collinear and appear in
that order.

Figure 2.1 illustrates the basic geometric relations between the LSQR and Craig
iterates, along with the LSLQ iterates xL

k (discussed further in [4, 10]) and the optimal
points x\ast 

k (discussed in section 3).

2.5.1. Craig's method for least-squares problems. An early method for
extending Craig's method to least-squares problems was introduced by Paige in [18]
and discussed by Paige and Saunders [20, sect. 7.3], where the authors found that
the method was equivalent to transferring to the LSQR point. As transferring in this
direction was highly unstable on inconsistent problems, the authors recommended
discarding the method.

Saunders [22] later proposed a method called extended CRAIG to solve the reg-
ularized least-squares problem

min
x

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ A\lambda I
\biggr] 
x - 

\biggl[ 
b
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2
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hk+1

hk

vk+1

xL
k

xL
k+1

xQ
k

xQ
k - 1

xQ
k+1

xG
k

xG
k+1

x\ast 
k

x\ast 
k+1

Fig. 2.1. The two-dimensional affine space xL
k + Span\{ hk, vk+1\} . The LSLQ point xL

k has
minimal norm within this space. Distances are not to scale, but all relative positions are correct
except possibly for 180-degree rotations of the directions for hk, hk+1, or vk+1.

by using Craig's method on the equivalent3 problem

min
x,s

\| x\| 22 + \| s\| 22 subject to
\bigl[ 
A \lambda I

\bigr] \biggl[ x
s

\biggr] 
= b.

However, this method minimizes \| xk  - x\ast \| 22 + \| sk  - s\ast \| 22 at each step rather than
\| xk  - x\ast \| 2, and in fact \| xk  - x\ast \| 2 is not even necessarily monotonic.

2.6. The conjugate gradient method. The CG method [12, 2] was originally
designed to solve the problem (SPD) where \=A is a positive definite matrix. At the
kth iteration, the iterate xCG

k lies in the Krylov subspace

\scrK k( \=A,\=b) = Span
\bigl\{ 
\=b, \=A\=b, . . . , \=Ak - 1\=b

\bigr\} 
.

The method can be derived from the Lanczos process [13], which is characterized by
the relations

\=AVk = VkTk + \=\beta k+1vk+1e
T
k = Vk+1Hk,

where Vk = [v1, . . . , vk] is orthogonal in exact arithmetic and

Tk =

\left[      
\=\alpha 1

\=\beta 2

\=\beta 2 \=\alpha 2
. . .

. . .
. . . \=\beta k
\=\beta k \=\alpha k

\right]      .

In this case, we define xCG
k = Vky

CG
k , where Tky

CG
k = \=\beta 1e1 and \=\beta 1 = \| \=b\| 2. If

\=A = ATA and \=b = AT b, then in exact arithmetic LSQR and CG produce the same
Vk, and xQ

k = xCG
k . To connect the two sets of notation further, we note that

Tk = BT
k Bk = RT

k Rk,

Hk = LT
k+1Bk =

\biggl[ 
RT

k

\theta k+1e
T
k

\biggr] 
Rk,

fk = R - T
k ( \=\beta 1e1) = R - T

k (\alpha 1\beta 1e1).

In particular,

xCG
k = VkT

 - 1
k ( \=\beta 1e1) = VkR

 - 1
k R - T

k ( \=\beta 1e1) = VkR
 - 1
k fk.

3Via the substitution s = 1
\lambda 
(b - Ax).
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There is at least one significant difference between the two processes. After k iterations
the Golub--Kahan process gives enough information to compute the matrix R\prime 

k+1,
whose final element is \rho \prime k+1. The Lanczos process produces Hk, which gives just
enough information to compute Rk and \theta k+1. There therefore does not appear to
be any clear analogue to Craig's method in the way that CG is analogous to LSQR,
although we could express the Craig iterates in the more CG-like form

xG
k+1 = Vk+1T

\prime  - 1
k+1(

\=\beta 1e1), where T \prime 
k+1 = R\prime T

k+1R
\prime 
k+1.(2.10)

3. Bounding the error. The error bounds derived by Estrin, Orban, and Saun-
ders in [4] rely primarily on finding an upper bound on \| x\ast \| 2. The following theorem
is a consequence of one of their main results [4, Thm. 4] as it pertains to this paper.

Theorem 3.1 (see Estrin, Orban, and Saunders [4]). Fix \~\sigma \leq \sigma min(A), and
define

\widetilde Rk+1 :=

\biggl[ 
Rk \theta k+1ek
0 \~\rho k+1

\biggr] 
,(3.1)

where \~\rho k+1 > 0 is chosen so that \sigma min( \widetilde Rk+1) = \~\sigma . Also define \~\phi k+1 so that

\widetilde RT
k+1

\~fk+1 :=

\biggl[ 
Rk \theta k+1ek
0 \~\rho k+1

\biggr] T \biggl[ 
fk
\~\phi k+1

\biggr] 
= \alpha 1\beta 1e1.(3.2)

Then \| x\ast \| 2 \leq \| \~xk+1\| 2, where

\~xk+1 := Vk+1
\widetilde R - 1
k+1

\~fk+1 = xQ
k +

\~\phi k+1

\~\rho k+1
hk+1.(3.3)

A few comments are in order. First, it can be seen from (2.3) that

RT
k fk = BT

k (\beta 1e1) = \alpha 1\beta 1e1

and therefore that \~fk+1 is well-defined. Second, | \~\phi k+1| is known to be an upper bound

on \| \Pi Ar
Q
k \| 2 for (LS) and on \| xCG

k  - x\ast \| \=A for (SPD) [16, 17, 11], and this fact leads
immediately to the error bound in (1.1). Finally, it was shown in [16, eq. (3.10)] that
\~\rho k+1 satisfies the recurrence

\~\rho 2k+1 = \~\sigma 2 +
\theta 2k+1\~\rho 

2
k

\rho 2k  - \~\rho 2k
,(3.4)

where \~\rho 1 = \~\sigma . The quantities \~\rho k+1 and \~\phi k+1 satisfy the relations

\~\rho k+1
\~\phi k+1 = \rho \prime k+1\phi 

\prime 
k+1 = \rho k+1\phi k+1.

3.1. Decomposition lemma. With the aim of improving upon existing error
bounds, we begin by strengthening the results of Theorem 3.1. Consider the orthog-
onal decomposition

x\ast = x\ast 
k+1 + x\bot 

k+1,

where x\ast 
k+1 (the error-minimizing point from (1.2)) is the projection of x\ast onto

Span(Vk+1). Then the following lemma gives us expressions for both x\ast 
k+1 and x\bot 

k+1

in terms of a few unknown parameters.
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1192 ERIC HALLMAN

Lemma 3.2. Assume that x\ast /\in Span(Vk), so that Algorithm 2.1 has not halted

after the first k iterations. First, define \phi \ast 
k+1 and \rho \ast k+1 so that | \phi \ast 

k+1| = \| \Pi Ar
Q
k \| 2,

\rho \ast k+1 > 0, and

R\ast T
k+1f

\ast 
k+1 :=

\biggl[ 
Rk \theta k+1ek
0 \rho \ast k+1

\biggr] T \biggl[ 
fk

\phi \ast 
k+1

\biggr] 
= \alpha 1\beta 1e1.(3.5)

Then

x\ast 
k+1 = Vk+1R

\ast  - 1
k+1f

\ast 
k+1 = xQ

k +
\phi \ast 
k+1

\rho \ast k+1

hk+1.(3.6)

Second, let \xi and v\bot be the unique nonnegative scalar and unit vector4 satisfying

x\bot 
k+1 = \xi 

\phi \ast 
k+1

\rho \ast k+1

v\bot .(3.7)

There then exists a nonnegative scalar \"\rho k+2 so that the matrix

\"Rk+2 :=

\left[  Rk \theta k+1ek 0
0 \rho \ast k+1 0
0 \xi \"\rho k+2 \"\rho k+2

\right]  (3.8)

satisfies the bound

\sigma min( \"Rk+2) \geq \sigma min(A).(3.9)

Finally, in the least-squares case, \rho \ast k+1 will also satisfy \rho \ast k+1 \geq \rho \prime k+1.

Proof. In exact arithmetic, the bidiagonalization process will eventually terminate
(say, after t > k + 1 iterations)5 and produce a matrix Vt that spans an invariant
subspace of ATA. If AVt = Ut+1Bt, then we may use a QR factorization to convert
Bt to the upper bidiagonal matrix Rt and obtain the equation

\| rt\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ ft  - Rtyt
\phi \prime 
t+1

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

.

Thus y\ast = yQt = R - 1
t ft. We then perform a series of Givens rotations so that

\.Qtft = \.Pk+1
\.Pk+2 \cdot \cdot \cdot \.Pt - 2

\.Pt - 1ft =

\left[  fk
\phi \ast 
k+1

0

\right]  ,(3.10)

where each \.Pi acts on rows i and i+1. Since \phi \prime 
t+1 represents the part of the residual

outside the span of A and since the LSQR iterate satisfies fk  - Rky
Q
k = 0, it follows

that
| \phi \ast 

k+1| = \| [\phi k+1, \phi k+2, . . . , \phi t]\| 2 = \| \Pi Ar
Q
k \| 2,

as we defined it. Thus the use of \phi \ast 
k+1 in (3.10) is justified. We may then rewrite the

product RT
t ft in the form

4If x\bot 
k+1 = 0, we set \xi = 0 and v\bot = 0.

5It is simple to check the case t = k + 1 separately.
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RT
t ft = ( \.QtRt)

T ( \.Qtft) =

\left[  RT
k 0 0

\theta k+1e
T
k \rho \ast k+1

\.\theta k+2e
T
1

0 z \.LT
t

\right]  \left[  fk
\phi \ast 
k+1

0

\right]  .(3.11)

Now RT
t ft = BT

t (\beta 1e1) = \alpha 1\beta 1e1, and so equating entries of the leftmost and right-
most expressions in (3.11) reveals that z = 0. The form of the entry \.\theta k+2e

T
1 is justified

because \.QtRt is necessarily upper Hessenberg. It follows that

y\ast = R - 1
t ft =

\left[  Rk \theta k+1ek 0
0 \rho \ast k+1 0

0 \.\theta k+2e1 \.Lt

\right]   - 1 \left[  fk
\phi \ast 
k+1

0

\right]  
and

x\ast = Vty\ast = [Vk, vk+1, V
\bot ]

\left[  Rk \theta k+1ek 0
0 \rho \ast k+1 0

0 \.\theta k+2e1 \.Lt

\right]   - 1 \left[  fk
\phi \ast 
k+1

0

\right]  .(3.12)

By performing the QL factorization \.LT
t = \"Qt

\"Lt and examining the top (k+2)\times (k+2)
subblock of the system in (3.12), we conclude that

x\ast = [Vk, vk+1, \"v]

\left[  Rk \theta k+1ek 0
0 \rho \ast k+1 0

0 \.\theta k+2 \"\rho k+2

\right]   - 1 \left[  fk
\phi \ast 
k+1

0

\right]  (3.13)

for some \"\rho k+2 and unit vector \"v. The claim in (3.6) follows, and from (3.7) it can be
seen that \"v =  - v\bot and \.\theta k+2 = \xi \"\rho k+2. We note that without loss of generality the
matrices \.Qt and \"Qt may be constructed so that \.\theta k+2 and \"\rho k+2 are nonnegative.

As for the bound in (3.9), we observe that\biggl[ 
\"Rk+2

0

\biggr] 
= \.QtRt

\biggl[ 
Ik+1 0

0 \"Qt

\biggr] \biggl[ 
Ik+2

0

\biggr] 
and therefore that \sigma min( \"Rk+2) \geq \sigma min(Rt) \geq \sigma min(A) by the Cauchy interlacing
theorem (similarly, we find that \sigma min(R

\ast 
k+1) \geq \sigma min( \"Rk+2)).

Finally, by comparing (3.5) with (2.5) and (2.6), it can be seen that \rho \ast k+1\phi 
\ast 
k+1 =

\rho \prime k+1\phi 
\prime 
k+1. Since

| \phi \ast 
k+1| = \| \Pi Ar

Q
k \| 2 \leq \| rQk \| 2 = | \phi \prime 

k+1| ,

it follows that \rho \ast k+1 \geq \rho \prime k+1.

Since \sigma min(R
\ast 
k+1) \geq \sigma min(A) \geq \sigma min( \widetilde Rk+1), it follows that \rho \ast k+1 \geq \~\rho k+1. This

implies in turn that | \phi \ast 
k+1| \leq | \~\phi k+1| , and so by comparing the forms for x\ast 

k+1 and
\~xk+1 in (3.6) and (3.3), we get the following corollary.

Corollary 3.3. x\ast 
k+1 is a convex combination of xQ

k and \~xk+1.

3.1.1. \bfitL \bfitD \bfitL \bfitT factorizations. Given a nonzero lower bound \~\sigma \leq \sigma min(A), we
can obtain practical bounds on the unknown quantities \rho \ast k+1, \xi , and \"\rho k+2. For conve-

nience, we will work with the quantity \.\theta k+2 = \xi \"\rho k+2 rather than \xi for the remainder
of the paper.
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1194 ERIC HALLMAN

The inequality in (3.9) implies that \sigma min( \"Rk+2) \geq \~\sigma , so we may obtain bounds on
our unknown quantities by considering the LDLT factorization of the shifted tridi-
agonal matrix \"RT

k+2
\"Rk+2  - \~\sigma 2I and using the fact that the elements of the diagonal

matrix D must be nonnegative.
The resulting factorization will be nearly identical to the LDLT factorization of\widetilde RT

k+1
\widetilde Rk+1  - \~\sigma 2I, from which the recurrence (3.4) for \~\rho k+1 may be derived (see [16,

sect. 3] for details). From the close relation between these two factorizations, we
derive the constraints6

\rho \ast 2k+1 +
\.\theta 2k+2  - \~\rho 2k+1 \geq 0,(3.14a)

\"\rho 2k+2  - \~\sigma 2  - 
\.\theta 2k+2\"\rho 

2
k+2

\rho \ast 2k+1 +
\.\theta 2k+2  - \~\rho 2k+1

\geq 0.(3.14b)

Equivalently, \biggl[ 
\rho \ast k+1 0
\.\theta k+2 \"\rho k+2

\biggr] T \biggl[ 
\rho \ast k+1 0
\.\theta k+2 \"\rho k+2

\biggr] 
 - 
\biggl[ 
\~\rho 2k+1 0
0 \~\sigma 2

\biggr] 
\succeq 0.(3.15)

This last inequality is the key to proving that x\ast falls within a particular ellipsoid,
which we do in the following section.

3.2. An ellipsoidal bound. Recall that the set\bigl\{ 
(x, y) : x2/\omega 2

1 + y2/\omega 2
2 \leq 1

\bigr\} 
describes a two-dimensional ellipse with semiaxes of length \omega 1 and \omega 2. With this
example in mind, we define the point

\~x\scrE 
k+1 :=

1

2

\Bigl( 
xQ
k + \~xk+1

\Bigr) 
= xQ

k +
\~\phi k+1

2\~\rho k+1
hk+1(3.16)

and the set

\scrE k+1 :=

\left\{   xQ
k + \zeta 1hk+1 + \zeta 2v

\bot :

\biggl( 
2\~\rho k+1

\~\phi k+1

\biggr) 2
\Biggl( 
\zeta 1  - 

\~\phi k+1

2\~\rho k+1

\Biggr) 2

+

\biggl( 
2\~\sigma 
\~\phi k+1

\biggr) 2

\zeta 22 \leq 1,

(3.17)

\| v\bot \| 2 = 1,

V T
k+1v

\bot = 0

\right\}   .

Then \scrE k+1 (Figure 3.1) describes an (n  - k)-dimensional ellipsoid in \BbbR n centered at

\~x\scrE 
k+1. One axis is the line segment from xQ

k to \~xk+1 and has length | \~\phi k+1| 
\~\rho k+1

\| hk+1\| 2,
and the remainining axes are all orthogonal to Vk+1 and have length | \~\phi k+1| /\~\sigma . The
first axis is necessarily shorter, since

| \~\phi k+1| 
\~\rho k+1

\| hk+1\| 2 = | \~\phi k+1| \| Vk+1
\widetilde R - 1
k+1ek+1\| 2 \leq | \~\phi k+1| 

\~\sigma 
.

We claim that the solution x\ast must fall within this ellipsoid.

6Defining 0/0 = 0 in the event that \.\theta k+2 = 0 and \rho \ast k+1 = \~\rho k+1.
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Theorem 3.4. Let \~\sigma , \~\rho k+1, \~\phi k+1, and \~xk+1 be defined as in Theorem 3.1. Then
x\ast \in \scrE k+1.

Before proving this theorem, we introduce a useful lemma.

Lemma 3.5. For fixed b, the set \{ x : Cx = b, C \succeq I\} is a ball with center b/2
and radius \| b/2\| 2.

Proof. With the substitution D = C - 1  - I/2, we find that

\{ x : Cx = b, C \succeq I\} = \{ b/2 +Db :  - I/2 \preceq D \preceq I/2\} 
\subseteq \{ b/2 +Db : \| D\| 2 \leq 1/2\} .

The final set is exactly the ball described. Furthermore, the inequality is actually
an equality: for any point b/2 + z in the ball, we may choose D = \kappa H, where
\kappa = \| z\| 2/\| b\| 2 and H is a Householder reflection that takes b to z\| b\| 2/\| z\| 2. For the
case z = 0, we may use D = 0.

We are now ready to prove the main theorem.

Proof of Theorem 3.4. Let \phi \ast 
k+1 and \rho \ast k+1 be defined as in Lemma 3.2. Lemma

3.2 implies that the solution to (LS) may be written in the form

x\ast = xQ
k + \zeta 1hk+1 + \zeta 2v

\bot ,(3.18)

where \biggl[ 
\rho \ast k+1 0
\.\theta k+2 \"\rho k+2

\biggr] \biggl[ 
\zeta 1
\zeta 2

\biggr] 
=

\biggl[ 
\phi \ast 
k+1

0

\biggr] 
(3.19)

for some nonnegative scalars \.\theta k+2 and \"\rho k+2. By defining

\widehat Rk+2 :=

\biggl[ 
\rho \ast k+1/\~\rho k+1 0
\.\theta k+2/\~\rho k+1 \"\rho k+2/\~\sigma 

\biggr] 
(3.20)

and using the fact that \rho \ast k+1\phi 
\ast 
k+1 = \~\rho k+1

\~\phi k+1, we may rewrite (3.19) as

\widehat RT
k+2

\widehat Rk+2

\biggl[ 
\~\rho k+1\zeta 1
\~\sigma \zeta 2

\biggr] 
=

\biggl[ 
\~\phi k+1

0

\biggr] 
.

By working from (3.15), we can check that \widehat RT
k+2

\widehat Rk+2 \succeq I. By applying Lemma

3.5, it follows that the vector [ \~\rho k+1\zeta 1
\~\sigma \zeta 2

] lies in a ball with center [
\~\phi k+1/2

0
] and radius

| \~\phi k+1| /2. The vector [ \zeta 1\zeta 2 ] therefore lies in an ellipse centered at [
\~\phi k+1/(2\~\rho k+1)

0
], having

semiaxes of length | \~\phi k+1| /(2\~\rho k+1) and | \~\phi k+1| /(2\~\sigma ). By applying this bound to the
formula for x\ast in (3.18), the theorem follows.

In the least-squares case, by taking (3.19) and using the relations \rho \ast k+1 \geq \rho \prime k+1

and \rho \ast k+1\phi 
\ast 
k+1 = \rho \prime k+1\phi 

\prime 
k+1, we obtain the additional constraint

\zeta 1 \leq \phi \prime 
k+1/\rho 

\prime 
k+1.

Equivalently (compare (3.6) and (2.9)), x\ast 
k+1 is a convex combination of xQ

k and xG
k+1.

In this situation, x\ast must lie in the intersection of an ellipsoid and a half-space, as
illustrated later in Figure 3.2. More formally, we define the domain

\scrE (G)
k+1 := \scrE k+1 \cap 

\biggl\{ 
xQ
k + \zeta 1hk+1 + x\bot : \zeta 1 \leq 

\phi \prime 
k+1

\rho \prime k+1

, V T
k+1x

\bot = 0

\biggr\} 
(3.21)

and get the following extension of Theorem 3.4.

Theorem 3.6. With all of the definitions used in Theorem 3.4, x\ast \in \scrE (G)
k+1.
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3.3. Tightness of bounds. If the only pieces of information we use to derive
our error bounds are

\bullet the information obtained by running k steps of Algorithm 2.1, and
\bullet a lower bound \~\sigma \leq \sigma min(A),

then the bound on x\ast established in Theorem 3.6 is sharp. We prove this assertion in
this section.

Definition 3.7. Given A, b, \~\sigma \leq \sigma min(A), and a nonnegative integer k, we say
that a matrix A\prime is indistinguishable from A (with respect to (b, k, \~\sigma )) if

\bullet Algorithm 2.1 behaves identically on the inputs (A, b) and (A\prime , b) for the first
k iterations, and

\bullet \sigma min(A
\prime ) \geq \~\sigma .

Theorem 3.8. Fix \~\sigma \leq \sigma min(A), and say that we have run k steps of Algorithm

2.1. For any z in the interior of \scrE (G)
k+1, there exists a matrix A(z), indistinguishable

from A, such that z is the minimum-norm solution to minx \| A(z)x - b\| 2.
Proof. We start by essentially reversing the process used to prove Theorem 3.4.

Since z \in \scrE (G)
k+1, the vector z may be written in the form

z = xQ
k + \zeta 1hk+1 + \zeta 2v

\bot (3.22)

for some unit vector v\bot such that V T
k+1v

\bot = 0. Without loss of generality, we may

set \zeta 2 and v\bot so that \zeta 1 and \zeta 2 have opposite signs. Furthermore, \zeta 1 and \zeta 2 satisfy\biggl[ 
\~\rho k+1\zeta 1
\~\sigma \zeta 2

\biggr] 
=

\biggl[ 
\~\phi k+1/2

0

\biggr] 
+D(z)

\biggl[ 
\~\phi k+1

0

\biggr] 
for some symmetric matrix D(z) (not necessarily unique) such that \| D(z)\| 2 < 1/2.

This inequality is strict because of the assumption that z is in the interior of \scrE (G)
k+1,

and guarantees that C(z) := (D(z) + I/2) - 1 is well-defined. It follows that

C(z)

\biggl[ 
\~\rho k+1\zeta 1
\~\sigma \zeta 2

\biggr] 
=

\biggl[ 
\~\phi k+1

0

\biggr] 
for some matrix C(z) \succeq I.

Since C(z) is positive definite, there exists a lower triangular matrix \widehat R(z) such that

C(z) = \widehat R(z)T \widehat R(z). From there, there exist quantities \rho 
\ast (z)
k+1,

\.\theta 
(z)
k+2, and \"\rho 

(z)
k+2 so that\widehat R(z) has the form specified in (3.20). Without loss of generality, these quantities are

nonnegative. In particular, if \"\rho k+2 is nonnegative and \zeta 1 and \zeta 2 are chosen to have

opposite signs, then (3.19) implies that \"\theta 
(z)
k+2 is nonnegative as well. We use these

quantities to define a matrix \"R
(z)
k+2 having the form specified by (3.8). The vector z

then satisfies the equation

z = [Vk+1, - v\bot ] \"R
(z) - 1
k+2

\left[  fk
\phi \ast 
k+1

0

\right]  ,(3.23)

paralleling (3.13).

Since z \in \scrE (G)
k+1, it follows that \zeta 1 \leq \phi \prime 

k+1/\rho 
\prime 
k+1 and thus by (3.19) that \rho 

\ast (z)
k+1 \geq 

\rho \prime k+1. This inequality in turn implies that there exists a lower bidiagonal matrix B
(z)
k+2
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whose leading entries are given by Lk+1 such that the QR factorizations of B
(z)
k+2 and

\"R
(z)
k+2 yield the same R factor. We omit the details, but this assertion may be verified

by using a few plane rotations.
Finally, we construct A(z) to have the form

A(z) = Uk+3B
(z)
k+2V

(z)T
k+2 ,

where V
(z)
k+2 = [Vk+1, - v\bot ], and Uk+3 is any orthogonal matrix extending Uk+1. The

matrix A(z) has the following properties:
\bullet Algorithm 2.1 behaves identically on the inputs (A, b) and (A(z), b) for the
first k iterations, returning (Uk+1, Vk+1, Lk+1).

\bullet \sigma min(A
(z)) = \sigma min(B

(z)
k+2) = \sigma min( \"R

(z)
k+2). Since C(z) \succeq 1 it follows from

section 3.1.1 that \sigma min( \"R
(z)
k+2) \geq \~\sigma and therefore that A(z) and A are indis-

tinguishable.
\bullet From (3.23) it follows that if we run LSQR on (A(z), b), the algorithm will
terminate in at most k + 2 iterations and return z. Thus z is the minimum-
norm solution to minx \| A(z)x - b\| 2.

The proof that x\ast \in \scrE k+1 for (SPD) is essentially the same, except that we
construct the matrix

\=A(z) = V
(z)
k+2T

(z)
k+2V

(z)T
k+2 ,

where T
(z)
k+2 := \"R

(z)T
k+2

\"R
(z)
k+2, and the constraint \rho \ast k+1 \geq \rho \prime k+1 no longer applies.

3.4. Minimizing the error bound. By Theorem 3.4, x\ast falls somewhere in
the ellipsoid \scrE k+1. In the least-squares case, Theorem 3.6 tells us that x\ast 

k+1 also lies

between xQ
k and xG

k+1. If \| xG
k+1\| 2 \leq \| \~xk+1\| 2, then we can tighten the bound on x\ast .

Figures 3.1 and 3.2 illustrate these bounds.
By Theorem 3.8, unless we acquire additional information about our problem the

solution x\ast could lie anywhere in the interior of \scrE (G)
k+1. For a generic point xk+1, we

therefore propose the error bound

\| xk+1  - x\ast \| 2 \leq max
z\in \scrE (G)

k+1

\| xk+1  - z\| 2.(3.24)

We can cheaply solve this maximization problem for LSQR (or for CG, using \scrE k+1

instead of \scrE (G)
k+1), but the resulting bound is not particularly elegant. It is more natural

to find the point for which the right-hand side of (3.24) is minimized, and for (SPD)

hk+1

xQ
k

xG
k+1\~xk+1\~x\scrE 

k+1

| \~\phi k+1| 
\~\rho k+1

\| hk+1\| 2

| \~\phi k+1| 
2\~\sigma 

Fig. 3.1. The center of the ellipsoid \~x\scrE 
k+1 often minimizes the error bound.
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hk+1

xQ
k

xG
k+1 \~xk+1

| \phi \prime 
k+1| 

\rho \prime 
k+1

\| hk+1\| 2

\approx | \phi \prime 
k+1| 
\~\sigma 
\surd 
2

Fig. 3.2. The Craig iterate xG
k+1 minimizes the error bound whenever

| \phi \prime 
k+1| 

\rho \prime 
k+1

\leq | \~\phi k+1| 
2\~\rho k+1

.

this point is always \~x\scrE 
k+1. For (LS) it is either \~x

\scrE 
k+1 or xG

k+1, whichever has the smaller

norm (we denote this point \~x
\scrE (G)
k+1 ).

The point \~x\scrE 
k+1 always satisfies the bound

\bigm\| \bigm\| \~x\scrE 
k+1  - x\ast 

\bigm\| \bigm\| 
2
\leq | \~\phi k+1| 

2\~\sigma 
,(3.25)

which is precisely a factor of 2 better than the earlier bound (1.1) for \| xQ
k  - x\ast \| 2.

If \| xG
k+1\| 2 \leq \| \~x\scrE 

k+1\| 2, then the bound\bigm\| \bigm\| xG
k+1  - x\ast 

\bigm\| \bigm\| \leq max
z\in \scrE (G)

k+1

\bigm\| \bigm\| xG
k+1  - z

\bigm\| \bigm\| 
2

is maximized when the projection of z onto Span(Vk+1) is x
G
k+1 (see Figure 3.2). By

defining

\~ck+1 :=
\rho \prime k+1

\~\rho k+1
=

\~\phi k+1

\phi \prime 
k+1

(3.26)

and working from (3.22) and the definition of \scrE k+1 in (3.17), we obtain after some
algebra the bound \bigm\| \bigm\| xG

k+1  - x\ast 
\bigm\| \bigm\| \leq 

| \phi \prime 
k+1| 
\~\sigma 

\sqrt{} 
1 - \~c - 2

k+1.(3.27)

But if \| xG
k+1\| 2 \leq \| \~x\scrE 

k+1\| 2, then \~c - 2
k+1 \leq 1/2, and the bound in (3.27) is at most a

factor of
\surd 
2 better than the trivial bound\bigm\| \bigm\| \bigm\| xQ

k  - x\ast 

\bigm\| \bigm\| \bigm\| 
2
\leq 

\| rQk \| 2
\~\sigma 

=
| \phi \prime 

k+1| 
\~\sigma 

.

The bound (3.27) also applies if we happen to know that the system Ax = b is
consistent, in which case Craig's method is optimal and x\ast 

k+1 = xG
k+1. Such a situation

might arise if A has more columns than rows and we wish to find the minimum-norm
x such that Ax = b. For more information on this topic, see [3].

3.5. New error bounds for LSQR and CG. Here we derive the error bounds
for LSQR and CG implied by (3.24), which are to the best of our knowledge novel.

We define the quantities

\omega 1 :=
| \~\phi k+1| 
2\~\rho k+1

\| hk+1\| 2 and \omega 2 :=
| \~\phi k+1| 
2\~\sigma 

,

D
ow

nl
oa

de
d 

09
/1

2/
20

 to
 7

0.
25

0.
11

4.
25

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHARP 2-NORM ERROR BOUNDS FOR LSQR AND CG 1199

which are the lengths of the semiaxes of \scrE k+1. Slightly modifying the parameterization
used for \scrE k+1 in (3.17), we write the solution in the form

x\ast = xQ
k + \zeta 1

hk+1

\| hk+1\| 2
+ \zeta 2v

\bot 

for some unit vector v\bot orthogonal to Vk+1, where \zeta 1 and \zeta 2 satisfy the bound

1

\omega 2
1

(\zeta 1  - \omega 1)
2 +

1

\omega 2
2

\zeta 22 \leq 1.

Therefore,\bigm\| \bigm\| \bigm\| xQ
k  - x\ast 

\bigm\| \bigm\| \bigm\| 
2
= (\zeta 21 + \zeta 22 )

1/2 \leq 
\biggl( 
\zeta 21 + \omega 2

2  - 
\omega 2
2

\omega 2
1

(\zeta 1  - \omega 1)
2

\biggr) 1/2

=: fk(\zeta 1).

Since \zeta 1 \in [0,min\{ 1, \~c - 1
k+1\} ] for (LS) and \zeta 1 \in [0, 1] for (SPD), we may write our new

error bound for LSQR as

\| xQ
k  - x\ast \| 2 \leq max

\zeta \in [0,min\{ 1,\~c - 1
k+1\} ]

fk(\zeta ),(3.28)

and similarly for CG, but with \zeta \in [0, 1].
The maximization problems for LSQR and CG have the respective solutions

\~\zeta k := min

\biggl\{ 
1, \~c - 2

k+1,
\omega 2
2

\omega 2
2  - \omega 2

1

\biggr\} 
and \~\zeta k := min

\biggl\{ 
1,

\omega 2
2

\omega 2
2  - \omega 2

1

\biggr\} 
.

The resulting LSQR bound will satisfy the inequalities

min

\Biggl\{ 
| \~\phi k+1| 
2\~\sigma 

,
| \phi \prime 

k+1| 
\~\sigma 
\surd 
2

\Biggr\} 
\leq fk(\~\zeta k) \leq min

\Biggl\{ 
| \~\phi k+1| 

\~\sigma 
,
| \phi \prime 

k+1| 
\~\sigma 

\Biggr\} 
,(3.29)

and the CG bound will satisfy the inequalities

| \~\phi k+1| 
2\~\sigma 

\leq fk(\~\zeta k) \leq 
| \~\phi k+1| 

\~\sigma 
.(3.30)

Since our error bound (3.25) for \~x\scrE 
k+1 is equal to the left-hand side of (3.30) and our

error bound for \~x
\scrE (G)
k+1 (i.e., the minimum of (3.25) and (3.27)) is at least as great as

the left-hand side of (3.29), we conclude that our optimal bounds from the previous
section outperform our bounds for CG and LSQR by at most a factor of 2.

3.6. Monotonicity results. The tightness result of Theorem 3.8 shows that

\scrE (G)
k+1 is the smallest region that provably contains x\ast given \~\sigma and the information

available to us after k iterations of Algorithm 2.1. Since we get more information

with each new iteration, the sets \scrE (G)
k+1 must shrink accordingly.

Corollary 3.9 (corollary to Theorem 3.8). For all k \geq 1, \scrE (G)
k+1 \subseteq \scrE (G)

k . Simi-
larly, \scrE k+1 \subseteq \scrE k.

This corollary leads immediately to several nice (though not necessarily novel)
monotonicity results.

Theorem 3.10. For fixed \~\sigma \leq \sigma min(A), the following hold in exact arithmetic:
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(a) \| \~xk+1\| 2 decreases monotonically.

(b) The bound \| xQ
k  - x\ast \| 2 \leq (\| \~xk+1\| 22  - \| xQ

k \| 22)1/2 decreases monotonically.

(c) | \~\phi k+1| decreases monotonically.

(d) The bound \| xQ
k  - x\ast \| 2 \leq min\{ | \~\phi k+1| 

\~\sigma ,
| \phi \prime 

k+1| 
\~\sigma \} decreases monotonically.

(e) The bound \| xQ
k  - x\ast \| 2 \leq fk(\~\zeta k) decreases monotonically.

(f) The bound

\| \~x\scrE (G)
k+1  - x\ast \| 2 \leq 

\left\{   
| \~\phi k+1| 
2\~\sigma , \~c - 2

k+1 > 1/2,
| \phi \prime 

k+1| 
\~\sigma 

\sqrt{} 
1 - \~c - 2

k+1, \~c - 2
k+1 \leq 1/2,

decreases monotonically.
(g) min\{ \~ck+1, 1\} decreases monotonically.

Proof.
(a) By Theorem 3.1, \| x\ast \| 2 \leq \| \~xk+1\| 2. Thus \| \~xk+1\| 2 is the point in \scrE k+1 with

the largest norm. Since \scrE k+1 \subseteq \scrE k, \| \~xk+1\| 2 \leq \| \~xk\| 2.
(b) \| \~xk+1\| 2 decreases monotonically and \| xQ

k \| 2 increases monotonically.

(c) \scrE k+1 has diameter | \~\phi k+1| /\~\sigma .
(d) | \~\phi k+1| decreases monotonically, and so does | \phi \prime 

k+1| = \| rQk \| 2.
(e) xQ

k is the point in \scrE (G)
k+1 \cap Span(Vk+1) that maximizes the bound (3.24), but

xQ
k+1 is also in \scrE (G)

k+1 \cap Span(Vk+1). Thus

max
z\in \scrE (G)

k+1

\bigm\| \bigm\| \bigm\| xQ
k  - z

\bigm\| \bigm\| \bigm\| 
2
\geq max

z\in \scrE (G)
k+1

\bigm\| \bigm\| \bigm\| xQ
k+1  - z

\bigm\| \bigm\| \bigm\| 
2
\geq max

z\in \scrE (G)
k+2

\bigm\| \bigm\| \bigm\| xQ
k+1  - z

\bigm\| \bigm\| \bigm\| 
2
.

(f) Since Span(Vk+1) \subseteq Span(Vk+2) and \scrE (G)
k+2 \subseteq \scrE (G)

k+1, it follows that

min
xk+1\in Span(Vk+1)

max
z\in \scrE (G)

k+1

\| xk+1  - z\| 2 \geq min
xk+2\in Span(Vk+2)

max
z\in \scrE (G)

k+2

\| xk+2  - z\| 2.

(g) Since the residuals in LSQR are updated along orthogonal directions, it can
be seen that\bigm\| \bigm\| \bigm\| \Pi Ar

Q
k

\bigm\| \bigm\| \bigm\| 2
2
=
\bigm\| \bigm\| \bigm\| \Pi Ar

Q
k - 1

\bigm\| \bigm\| \bigm\| 2
2
 - 
\bigm\| \bigm\| \bigm\| rQk  - rQk - 1

\bigm\| \bigm\| \bigm\| 2
2
\leq \~\phi 2

k  - \phi 2
k.

But | \~\phi k+1| is the tightest available bound on \| \Pi Ar
Q
k \| 2 after k iterations, so

\~\phi 2
k+1 \leq \~\phi 2

k  - \phi 2
k. Since \phi \prime 2

k+1 = \phi \prime 2
k  - \phi 2

k, it follows that if \~ck \leq 1, then

\~c2k+1 = \~\phi 2
k+1/\phi 

\prime 2
k+1 < \~\phi 2

k/\phi 
\prime 2
k = \~c2k.

4. Practical considerations. As with earlier error bounds, our bounds depend
on finding the quantity \~\rho k+1 such that \sigma min( \widetilde Rk+1) = \~\sigma , where \widetilde Rk+1 was defined in
(3.1). As was observed in [4] and [23], the quality of the estimate \~\rho k+1 is sensitive
to the choice of \~\sigma . Too small a value of \~\sigma can lead to weak bounds, but due to the
cancellation involved in (3.4), if \~\sigma is too large, then the procedure for computing \~\rho k+1

may fail entirely, sometimes even if \~\sigma is smaller than \sigma min(A). Thus even if we are
fortunate enough to know \sigma min(A) precisely, it is prudent to choose \~\sigma to be somewhat
smaller. The authors of [4] suggest using an estimate such as \~\sigma = \sigma min(A)(1 - 10 - 10).
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For many practical problems, we will not have access to a lower bound \~\sigma . We could
therefore consider estimating \~\sigma at each iteration by \sigma min(Rk) or an approximation
thereof (several methods for doing so are discussed in [17]) and using it with an error
estimate that is less sensitive to the choice of \~\sigma . Instead of choosing \~\rho k+1 so that

\sigma min( \widetilde Rk+1) = \~\sigma , for example, we could choose \~\rho k+1 so when we consider the QR

factorization of \widetilde RT
k+1, the final entry in the R factor is equal to \~\sigma . With this strategy,

the error bound in (1.1) simplifies to\bigm\| \bigm\| \bigm\| xQ
k  - x\ast 

\bigm\| \bigm\| \bigm\| 
2
<

\| AT rMk \| 2
\~\sigma 2

=
\| \=rMk \| 2
\~\sigma 2

,(4.1)

where rMk is the residual from LSMR [6] (equivalent to MINRES [19] on the normal
equations), which chooses xM

k \in Span(Vk) to minimize \| AT rMk \| 2, and \=rMk is the
residual from running MINRES on (SPD). Meurant and Tich\'y [17, Thm. 1] have
proposed an estimate that is equivalent to this one in exact arithmetic but which
also holds (up to minor inaccuracy) in finite precision, and which can be computed
at \scrO (1) cost per iteration. Although it is a loose bound, it is both monotonically
decreasing and relatively insensitive to the choice of \~\sigma . We note that if we estimate \~\sigma 
by \sigma min(Rk), then our error estimates are no longer guaranteed to be upper bounds,
but given enough time for \sigma min(Rk) to converge to \sigma min(A) they may be close enough
for practical applications.

5. Implications for the conjugate gradient method. Our results are valid
when running the CG method on any system \=Ax = \=b where \=A is an SPD matrix.
Although CG can be derived from the Lanczos process as in section 2.6, it can also
be run without forming the tridiagonal matrix Tk explicitly, as shown in Algorithm
5.1. As noted in [17, sect. 2], the quantities \gamma k and \delta k+1 relate to the entries of Rk

via the equalities \rho k = 1/
\surd 
\gamma k and \theta k+1 =

\sqrt{} 
\delta k+1/

\surd 
\gamma k.

Given \~\sigma \leq 
\sqrt{} 
\lambda min( \=A), the bound from (1.1) may be computed as

\bigm\| \bigm\| xCG
k  - x\ast 

\bigm\| \bigm\| 
2
\leq 

\~\gamma 
1/2
k+1

\~\sigma 

\bigm\| \bigm\| \=rCG
k

\bigm\| \bigm\| 
2
,

where

\~\gamma 1 =
1

\~\sigma 2
and \~\gamma k+1 =

\~\gamma k  - \gamma k
\~\sigma 2(\~\gamma k  - \gamma k) + \delta k+1

.

Several of our main results may be summarized in the form of the following theorem.

Algorithm 5.1 Conjugate gradient method

Require: \=A,\=b
1: xCG

0 = 0
2: \=rCG

0 = \=b
3: \=p1 = \=rCG

0

4: for k = 1, 2, . . . do

5: \gamma k =
(\=rCG

k - 1)
T \=rCG

k - 1

\=pT
k

\=A\=pk

6: xCG
k = xCG

k - 1 + \gamma k \=pk
7: \=rCG

k = \=rCG
k - 1  - \gamma kA\=pk

8: \delta k+1 =
(\=rCG

k )T \=rCG
k

(\=rCG
k - 1)

T \=rCG
k - 1

9: \=pk+1 = \=rCG
k + \delta k+1\=pk

10: end for
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Theorem 5.1. Define

\~x\scrE 
k := xCG

k +
\~\gamma k+1

2
\=pk+1.

Then x\ast = \=A - 1\=b lies in an ellipsoid with center \~x\scrE 
k and axes of length \~\gamma k+1\| \=pk+1\| 2

and
\~\gamma 
1/2
k+1

\~\sigma \| \=rCG
k \| 2. In particular,

\bigm\| \bigm\| \~x\scrE 
k  - x\ast 

\bigm\| \bigm\| 
2
\leq 

\~\gamma 
1/2
k+1

2\~\sigma 

\bigm\| \bigm\| \=rCG
k

\bigm\| \bigm\| 
2
.

These bounds are tight in the same sense as in Theorem 3.8.

6. Regularization. Here we extend our results to the regularized least-squares
problem

min
x

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ A\lambda I
\biggr] 
x - 

\biggl[ 
b
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

,

where \lambda \in \BbbR . This will allow us to find error bounds in cases where a lower bound
\~\sigma to \sigma min(A) is unavailable, but we can also handle cases where \~\sigma > 0 and \lambda > 0

simultaneously. One possible method would be to define \^A = [ A
\lambda I ] and

\^b = [ b0 ] and

solve minx \| \^Ax  - \^b\| 2 using the same methods as before, but it is more efficient to
take advantage of the simple structure of the regularization term \lambda I.

In an extension of the relations in (2.1), the bidiagonalization process will now be
characterized by the relations\biggl[ 

A
\lambda I

\biggr] 
Vk =

\biggl[ 
Uk+1 0
0 Vk

\biggr] \biggl[ 
Bk

\lambda Ik

\biggr] 
,

\biggl[ 
A
\lambda I

\biggr] T \biggl[ 
Uk+1 0
0 Vk

\biggr] 
= Vk+1

\biggl[ 
Bk \alpha k+1ek+1

\lambda Ik 0

\biggr] T
.

We may perform a QR factorization \^Qk[
Bk

\lambda I
] = [ \^Rk

0
] following the procedure\left[    

\^\rho \prime \prime k 0 \^\phi \prime \prime 
k

\beta k+1 \alpha k+1 0
\lambda 0 0

0 \lambda 0

\right]    \mapsto \rightarrow 

\left[    
\^\rho \prime k 0 \^\phi \prime 

k

\beta k+1 \alpha k+1 0
0 0 \ast 
0 \lambda 0

\right]    \mapsto \rightarrow 

\left[     
\^\rho k \^\theta k+1

\^\phi k

0 \^\rho \prime \prime k+1
\^\phi \prime \prime 
k+1

0 0 \ast 
0 \lambda 0

\right]     ,

where \^\rho \prime \prime 1 = \alpha 1, as is done in [6], and \^\phi \prime \prime 
k+1 = \| b\| 2. In this manner, the matrix \^Qk

alternates between operating on rows (j, j + k + 1) and (j, j + 1) for 1 \leq j \leq k. We
may define the LSQR and Craig iterates by

xQ
k = Vk

\^R - 1
k

\^fk and xG
k+1 = Vk+1

\^R\prime  - 1
k+1

\^f \prime 
k+1,(6.1)

where \^R\prime 
k+1 and \^f \prime 

k+1 have \^\rho \prime k+1 and \^\phi \prime 
k+1 as their final elements. The iterate xQ

k is

equivalent to the one produced by running LSQR on minx \| \^Ax - \^b\| 2. The iterate xG
k+1

is not, but is instead equivalent to the iterate produced by the extended Craig method
from section 2.5. The Craig iterates will no longer update along orthogonal directions,
but they do allow us to derive tighter error bounds than we would have gotten by
running Craig's method directly on minx \| \^Ax  - \^b\| 2. This does not contradict the
tightness result of Theorem 3.8 because we know more about the structure of \^A than
just the bound

\surd 
\~\sigma 2 + \lambda 2 \leq \sigma min( \^A).
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Aside from the change to Craig's method, our major theorems follow more or less
as before. Given a bound \~\sigma \leq \sigma min(A), we are then left with the problem of finding
the smallest positive \v \rho k+1 such that

\sigma min

\biggl[ 
\^Rk

\^\theta k+1ek
0 \v \rho k+1

\biggr] 
\geq 
\sqrt{} 

\~\sigma 2 + \lambda 2.

We could compute \v \rho k+1 by the same recurrence as before, but there is a more stable
method. Since there exists an orthogonal matrix \v Q such that

\v Q

\left[    
Rk \theta k+1ek
0 \~\rho k+1

\lambda I 0
0 \lambda 

\right]    =

\left[    
\^Rk

\^\theta k+1ek
0 \v \rho k+1

0 0
0 0

\right]    ,

we may compute \~\rho k+1 according to (3.4) and use it with the QR factorization above
to find \v \rho k+1. As long as we keep track of both Rk and \^Rk, we do not need to compute
the plane rotations explicitly. Instead, we may use the recurrence

\^\lambda k+1 =

\biggl( 
\lambda 2 + \^\lambda 2

k

\theta 2k+1

\^\rho 2k

\biggr) 1/2

,

where \^\lambda 1 = \lambda , and at the final step compute

\v \rho k+1 =
\Bigl( 
\~\rho 2k+1 +

\^\lambda 2
k+1

\Bigr) 1/2
.

In cases where \~\sigma = 0 we have \~\rho k+1 = 0 for (SPD) and \~\rho k+1 = \rho \prime k+1 for (LS). Either
way, and in contrast to cases where a nontrivial bound \~\sigma \leq \sigma min(A) is used, \v \rho k+1

may be computed with no risk of breakdown.

7. Numerical experiments. We ran tests on matrices from the SuiteSparse
Matrix Collection [1]. For overdetermined problems, we generally followed the proce-
dure of Fong and Saunders [6]: problems were downloaded from the LPnetlib group
in MATLAB, and a sparse matrix A and vector b were generated by the commands
A = (Problem.A)' and b = (Problem.aux.c), scaling b to have unit norm. Instead
of removing the cases with b = 0 or AT b = 0, we generated a vector b for the m \times n
matrix A according to the procedure

1. x = (1:n)';
2. b = A*x + 1e-5*randn(m,1)*norm(x)*sqrt(m/(m-n));

We considered cases with max\{ m,n\} \leq 6000 and computed \sigma min(A) and used
\~\sigma = (1 - \epsilon )\sigma min(A) for various values of \epsilon (with \epsilon = 10 - 10 being the default). We then

computed x\ast as A\setminus b and ran all problems until the condition \| AT rMk \| 2/(\~\sigma 2\| xQ
k \| 2) \leq 

10 - 10 was satisfied, using a loose but robust bound resulting from (4.1).
We measured the true errors for three sets of iterates:
\bullet the LSQR iterates xQ

k ,

\bullet whichever of \~x\scrE 
k+1 and xG

k+1 had smaller norm (denoted \~x
\scrE (G)
k+1 ), and

\bullet whichever of \~xk+1 and xG
k+1 had smaller norm (denoted \~x

(G)
k+1).

The iterate xQ
k is the point in \scrE (G)

k+1 with the smallest norm, \~x
\scrE (G)
k+1 minimizes our error

bound (3.24), and \~x
(G)
k+1 has the largest norm of all points in \scrE (G)

k+1 \cap Span(Vk+1).
For the first set of experiments, we compared the true errors with three error

bounds: the LSLQ-based bound \| xQ
k  - x\ast \| 2 \leq (\| \~xk+1\| 22  - \| xQ

k \| 22)1/2 from [4, eq.
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1204 ERIC HALLMAN

Fig. 7.1. A relatively well-conditioned case. Left: The error increases in two distinct phases.
Right: The quality of the estimate eventually degrades. Given a sufficient number of iterations,
estimating \| R - 1

k \| 2 can potentially work well in practice.

(36)],7 the LSMR-based bound \| xQ
k  - x\ast \| 2 \leq \| AT rMk \| 2/\~\sigma 2 from [17], and the optimal

bound on \| \~x\scrE (G)
k+1  - x\ast \| 2 being the smaller of the bounds from (3.25) and (3.27). In

general, we observed the following behavior.
1. In many cases, all three errors were nearly identical and monotonically de-

creasing after the first few iterations. The error bounds were all close and
generally within an order of magnitude of the true errors. A second type of
pattern (see Figure 7.1) was more interesting. While the LSQR error always
decreased monotonically, the errors for the other two points would increase in
two different phases. The first phase would come just before | \~\phi k+1| dropped
below | \phi \prime 

k+1| , while the system was still plausibly consistent. In this phase,
the iterates produced by Craig's method are beginning to diverge significantly
but we are not yet able to determine that they are doing so.
In the second phase, the error starts to increase right when our error bounds
plateau. Here, the quality of our estimates degrade to the point where our
new error bounds are barely tighter than the LSMR-based bound (4.1). We
do not have an intuitive explanation for why the errors should therefore in-
crease rather than merely plateau, but we will note a potentially related fact:
although \| xQ

k \| 2 increases and \| \~xk+1\| 2 decreases monotonically, \| xQ
k  - \~xk+1\| 2

(i.e., the length of the minor axis of \scrE k+1) does not necessarily decrease mono-
tonically.

2. Our error bound for \~x
\scrE (G)
k+1 was monotonically decreasing and always smaller

than the LSLQ-based bound for xQ
k , though never by much. Which method

had the smallest true error could vary over time (see Figure 7.2), but at
convergence it was generally LSQR.

For the second set of experiments, we computed the LSQR error bound (3.28)
for estimates \~\sigma = (1  - 10 - m)\sigma min(A) with 4 \leq m \leq 12. We compared these bounds
to the estimate \| AT rMk \| 2/\sigma 2

min(Rk),
8 where we used an approximation to \sigma min(Rk)

7Given \~\rho k+1, this expression can be evaluated cheaply and without cancellation---see [4, eq. (19)]
and [10, sect. 3.1].

8Here we used a cheap estimate of \| AT rMk \| instead of computing AT rMk explicitly.

D
ow

nl
oa

de
d 

09
/1

2/
20

 to
 7

0.
25

0.
11

4.
25

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHARP 2-NORM ERROR BOUNDS FOR LSQR AND CG 1205

Fig. 7.2. An ill-conditioned case. Left: We do not know which method has the smallest error
at any point in time, but at convergence it was generally LSQR. Right: Our estimates still work as
upper bounds despite the large number of iterations.

Fig. 7.3. Different regularization parameters for an SPD problem. Left: Our error estimate
is tighter when \lambda is large compared to \lambda min(A). Right: Our error estimate quickly converges to the
MINRES-based bound.

following the method of [17, Alg. 5] and costing \scrO (1) per iteration. Our observations
mirror those made in [17]: better approximations \~\sigma lead to tighter error bounds,
but beyond a certain point the bounds become the same as the robust LSMR-based
bound.

When we use \sigma min(Rk) as a proxy for \sigma min(A) the robust LSMR-based estimate
is not monotonically decreasing (since \sigma min(Rk) is decreasing), nor is it guaranteed to
be an upper bound. Given sufficient time for the smallest singular value to converge,
it may nonetheless be useful for practical purposes---see [17] for a more thorough
discussion of methods for estimating \sigma min(Rk).

In a third set of experiments (see Figure 7.3), we treated \sigma min(A) as unknown but
used varying regularization parameters \lambda . In general, using larger values for \lambda had an
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effect on our estimates similar to using tighter values for \~\sigma . Our error estimates were
smaller than the corresponding LSMR-based estimates, though never by much, and
these two estimates converged as the error decreased.

We also ran these experiments on real SPD matrices from the SuiteSparse collec-
tion, solving Ax = b or (A + \lambda I)x = b with b = [1, 1, . . . , 1]/

\surd 
n. Our observations

were essentially the same, except that since there was no equivalent to Craig's method
we observed no ``first phase"" in which the errors for \~xk+1 or \~x\scrE 

k+1 would increase. The
errors for these points would still increase later on, around the time when the quality
of our error estimates degraded.

Given the results of these experiments, it is not entirely clear whether it is better

to switch to \~x
(G)
k+1 or \~x

\scrE (G)
k+1 upon termination or to continue to use xQ

k . If a user adopts
the conservative stance that an iterative method is only as good as its best guaranteed

error bound, then \~x
\scrE (G)
k+1 is always superior to xQ

k . However, our experiments suggest

that whenever the relative error is below 10 - 8 or so, xQ
k is highly likely to have the

smaller true error. In many situations it may therefore be preferable simply to use
the LSQR or CG iterates.

8. Conclusions. Given a lower bound \~\sigma on \sigma min(A) or a regularization param-

eter \lambda > 0, we have derived estimates for the LSQR error \| xQ
k  - x\ast \| 2 and similar

estimates for the CG error. We have also shown how to find a point that triggers
our stopping critera sooner than LSQR or CG would, although its true error is often
larger than the LSQR/CG error. All of the necessary computation can be done for
only \scrO (1) work beyond that already required by LSQR, since we can cheaply track the
error estimates and transfer from LSQR to the desired point only upon termination.

We reiterate two caveats: first, we have assumed exact arithmetic throughout
this paper, and so our improved bounds may not necessarily hold in finite precision.
Second, in practice the LSQR point xQ

k will often have a smaller error than the point

\~x
\scrE (G)
k+1 that minimizes our error bound. Taking these two facts into consideration, as

well as the fact that our new error estimates are at most a factor of 2 smaller than
existing estimates that hold in finite precision, we recommend using LSQR in practice.

The more significant contribution of this paper is the tightness result of Theorem
3.8. Our bounds are the tightest estimates possible if we only use the information
gained from running the Golub--Kahan (resp., Lanczos) process, plus \~\sigma and \lambda . Thus
future work in developing practical stopping rules should either use additional infor-
mation about A and b or focus on developing error estimates that are not guaran-
teed upper bounds. The latter option will be especially practical in situations where
\sigma min(A) is not known ahead of time.

MATLAB implementations for both CG and LSQR are available at https://
erhallma.math.ncsu.edu/forward/.

Acknowledgments. The author would like to thank the referees for their de-
tailed comments, which have greatly improved the presentation of this paper. Thanks
also go to Jonathan Leake, whose comments helped to improve the exposition.
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