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Abstract. The Tensor-Train (TT) format is a highly compact low-rank representation for high-
dimensional tensors. TT is particularly useful when representing approximations to the solutions of
certain types of parametrized partial differential equations. For many of these problems, computing
the solution explicitly would require an infeasible amount of memory and computational time. While
the TT format makes these problems tractable, iterative techniques for solving the PDEs must be
adapted to perform arithmetic while maintaining the implicit structure. The fundamental operation
used to maintain feasible memory and computational time is called rounding, which truncates the
internal ranks of a tensor already in TT format. We propose several randomized algorithms for
this task that are generalizations of randomized low-rank matrix approximation algorithms and
provide significant reduction in computation compared to deterministic TT-rounding algorithms.
Randomization is particularly effective in the case of rounding a sum of TT-tensors (where we
observe 20× speedup), which is the bottleneck computation in the adaptation of GMRES to vectors
in TT format. We present the randomized algorithms and compare their empirical accuracy and
computational time with deterministic alternatives.

Key words. high-dimensional problems, randomized algorithms, tensor decompositions, tensor-
train format

AMS subject classifications. 15A69, 65F55, 65F99, 65Y20, 68W20.

1. Introduction. An increasing number of applications in science and technol-
ogy involve the manipulation of multi-dimensional data, or tensors that are higher
order equivalents of vectors (first-order) and matrices (second-order). The number
of elements of a tensor as well as the storage consumption grow exponentially with
the number of the dimensions, a phenomenon known as the curse of dimensionality.
When problems of high dimensions are concerned, beating the curse of dimensionality
and finding a solution efficiently remains a challenge. Nevertheless, different tensor
formats and methods based on tensor products [31, 35, 24, 25, 45] have shown poten-
tial for mitigating the curse of dimensionality and tackling high-dimensional problems
that could not be addressed with conventional methods. Initially, the concept of ten-
sor decompositions was introduced in 1927 by expressing a tensor as the sum of a
finite number of rank-one tensors [28] — also known as the canonical format. The
canonical format’s memory requirements are not high, though it can suffer from nu-
merical stability issues [14, 29]. Tensors in Tucker form [6] are well known in quantum
chemistry [14, 29] since they yield robust algorithms due to the ability to form an em-
bedded manifold [34], but one of the disadvantages of the Tucker format is its storage
consumption that still depends exponentially on the number of dimensions.

One of the most promising tensor formats is the Tensor-Train (TT) format, a
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tensor product format that was initially proposed in quantum physics, also known
as matrix product states (MPS) [20], and was reinvented in numerical linear algebra
[46, 44]. It combines both the advantages of the canonical and Tucker formats, i.e., 1)
the storage consumption of a tensor depends linearly on the number of dimensions and
2) there exist robust algorithms for the computation of best approximations. Applica-
tions of the TT format arise from various applications such as high-dimensional PDEs
like the Fokker Planck equations [17, 49], quantum physics [51, 40], high-dimensional
data analysis [33, 32], machine learning [7, 19, 11, 42], and uncertainty quantification
[54, 38] to mention just a few. Typically, those applications require an approximate
solution of linear systems of equations, eigenvalue problems, or completion problems
[22, 4, 48]. The TT format is a low-rank representation that, for TT-tensors with
small rank, offers a tremendous reduction in the computational complexity and often
exposes the structure of the problem. The use of low-rank structures such as the
TT format [44] to represent high-dimensional objects allows the solution of linear
high-dimensional problems by generalizing standard numerical linear algebra tech-
niques to multi-index arrays of coefficients (tensors) and the multivariate functions
they approximate.

In this paper, we focus on the problem of rounding a tensor in TT format; that is,
assuming that we are given a TT-tensor, we want to find a compressed representation
that is nearly as accurate as the original representation. There are several techniques
for computing the initial TT-tensors which do not require forming the entire ten-
sor explicitly [15, 36, 43, 50]. One such technique that is popularly used is called
the TT-cross approximation. The standard TT approach to rounding, proposed by
Oseledets [44], has two phases [44, Algorithm 2]: orthogonalization followed by com-
pression (typically using the SVD). Here, by orthogonalization, we mean a sweep of
orthogonalization steps across every tensor core. Analysis shows that the orthogonal-
ization step dominates the computational cost of this approach. Motivated by this
observation, the goal of this work is to develop randomized algorithms for rounding
TT-tensors that avoid expensive orthogonalization. In the following, we present the
main contributions of this paper.

Overview of the paper and main contributions. This paper develops several new
randomized algorithms for rounding tensors in the TT format and is organized as
follows. In Section 2, we set some notation as well as review some basic material
on randomized matrix algorithms and standard TT operations along with a detailed
analysis of their computational costs. In Section 3, we propose various new random-
ized algorithms for TT-rounding with the focus on Randomize-then-Orthogonalize,
Two-Sided-Randomization, and rounding of a sum of TT-tensors.

1. In Algorithm 3.1, Orthogonalize-then-Randomize, we replace the SVD step
in the standard TT-rounding algorithm with a randomized SVD assuming
that the truncated ranks are known a priori.

2. In Algorithm 3.2, Randomize-then-Orthogonalize, we propose to form ran-
domized sketches of each core by nested contractions with a TT-tensor with
random cores in a first step, before performing the orthogonalization sweep
on these much smaller matrices. Our analysis and experiments show that
this approach allowed for the best speedup compared to the deterministic
algorithm while retaining excellent accuracy.

3. In Algorithm 3.3, Two-Sided-Randomization, we completely eliminate the
need for separate orthogonalization and compression sweeps. Instead, we
work with a two-sided randomized approach which computes products with
two random tensors followed by a compression step (which involves orthogo-
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nalization of much smaller matrices). Although this approach is slightly more
expensive in terms of flops count and less accurate than techniques mentioned
before, it eliminates the need of extensive orthogonalization and allows for
the truncation phase to be more independent and highly parallelizable.

4. We extend the Randomize-then-Orthogonalize approach for compressing a
TT-tensor that is presented as a sum of TT-tensors (Algorithm 3.4). This
special case is of importance in many applications such as solving parametric
linear systems in the TT format. The use of randomization enables significant
performance improvements by exploiting the structure of the sum tensor in
a way that a deterministic algorithm cannot.

We provide an analysis of the computational cost of the proposed algorithms in Sub-
section 3.5 and show that they are computationally more efficient than existing algo-
rithms. We justify our analysis through numerical experiments in Section 4 on both
synthetic data and tensors generated while solving parametric partial differential equa-
tions (PDEs). Some conclusions and future outlook are presented in Section 5. The
Matlab code for the implementation and numerical experiments is publicly available
at https://github.com/SAMSI-RandTensors/randomizedTT.

Related work. There have been several recent developments in obtaining low-rank
compression of tensors. We limit our literature review to the publications dealing
with TT-tensors described in [44], which is closest to our work, and refer the reader
to review papers for other developments in tensor decompositions [1, 9, 10, 24]. Os-
eledets [44] proposes a method for rounding TT-tensors. A parallel version of this
method is introduced and developed in [12]. Our newly proposed approaches are
more computationally efficient compared to existing deterministic algorithms. Other
works [30, 8, 2] discuss randomized algorithms for compressing tensors in the TT for-
mat. These approaches differ from ours in that they require access to the entries of
the tensor, i.e., they do not assume that the tensor is already in TT format. A recent
paper [3] also uses randomization to produce a TT approximation of a full tensor but
relies on tensor actions (i.e., applications of the tensor on N − 1 vectors, where N
is the order of the tensor). Other methods for constructing a low-rank compression
in the TT format involve alternating least squares [18]. The use of tensor random
projections in which the random tensors are taken to be in TT format have also been
considered in [5, 47, 21]. While these papers use randomization in the context of TT-
tensors, none of them directly address the problem of rounding which is the central
focus of our paper.

2. Background. Here, we review the notation and necessary operations involv-
ing tensors in a modest amount of detail. For a more comprehensive exposition we
refer the reader to [44, 35, 12].

2.1. Notation. We denote tensors by boldface script letters (e.g., X) and ma-
trices by boldface Roman letters (e.g., A). We follow Matlab-like convention and
denote the entries of a 3-way tensor X as X(i, j, k). A colon denotes the entire range
of indices in that dimension. We denote the column fibers as X(:, j, k), row fibers as
X(j, :, k) and tube fibers as X(j, k, :). The mode-n unfolding (or matricization) of the
tensor X is denoted as X(n) ∈ RIn×(I/In), where I = I1I2 · · · In. The columns of the
mode-n unfolding are composed of the appropriate mode-n fibers, e.g., the columns
of mode-1 unfolding are column fibers and the columns of mode-3 unfolding are tube
fibers. Given a matrix A ∈ RM×In , the mode-n product Y = X×nA is defined by its
mode-n unfolding Y(n) = AX(n). The norm of a tensor is equivalent to the Frobenius
norm of any of its unfoldings: ‖X‖ = ‖X(n)‖F .

3
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An order-N tensor X ∈ RI1×···×IN is in the TT format if there exist positive
integers R0, . . . , RN with R0 = RN = 1 and order-3 tensors TX,1, . . . ,TX,N , called
TT-cores, with TX,n ∈ RRn−1×In×Rn for 1 ≤ n ≤ N , such that

X(i1, . . . , iN ) = TX,1(i1, :) · . . . · TX,n(:, in, :) · . . . · TX,N (:, iN ),

where 1 ≤ in ≤ In. Note that because R0 = RN = 1, the first and last TT-cores are
(order-2) matrices so TX,1(i1, :) ∈ RR1 and TX,N (:, iN ) ∈ RRN−1 . The Rn−1 × Rn
matrix TX,n(:, in, :) is referred to as the inth slice of the nth TT-core of X. It is worth
mentioning that the TT decomposition is not unique due to the multiplicative nature
of the format.

In

Rn−1
Rn

TX,n ∈ RRn−1×In×Rn

is a TT core

Rn

Rn−1 · · ·

Rn

· · ·

Rn

In

H(TX,n) ∈ RRn−1×InRn

is horizontal unfolding

Rn

Rn−1

...

Rn−1

...

Rn−1

In

V(TX,n) ∈ RRn−1In×Rn

is vertical unfolding

Fig. 2.1. Horizontal and vertical unfoldings of a TT-core TX,n.

In order to express the arithmetic operations on TT-cores using linear algebra,
we will often use two specific matrix unfoldings of the order-3 tensors. The horizontal
unfolding of a TT-core TX,n corresponds to the concatenation of the slices TX,n(:, in, :)
for in = 1, . . . , In horizontally. We denote the corresponding operator by H, so
that H(TX,n) is an Rn−1 × InRn matrix. The vertical unfolding of a TT-core TX,n

corresponds to the concatenation of the slices TX,n(:, in, :) for in = 1, . . . , In vertically.
We denote the corresponding operator by V, so that V(TX,n) is an Rn−1In × Rn
matrix, see Figure 2.1. Moreover, we will often make use of a tensor network diagram,
see Figure 2.2, to graphically illustrate TT-tensor operations. Here nodes represent
tensors and edges represent modes so that connected nodes can be contracted.

TX,1 TX,2 TX,3 TX,4 TX,5

R1 R2 R3 R4

I1 I2 I3 I4 I5

Fig. 2.2. Tensor network diagram for an order-5 TT-tensor.

Let X(1:n) ∈ R(I1I2···In)×(In+1···IN ) denote an unfolding of the first n modes of a
TT-tensor X. It has the rank Rn representation

X(1:n) = V(TX,1:n)H(TX,n+1:N ),

where in an extension of their earlier definitions, V(TX,1:n) ∈ R(I1I2···In)×Rn represents
the mode-(n+ 1) unfolding of the product of the first n TT-cores and H(TX,n+1:N ) ∈
RRn×(In+1···IN )) represents the mode-1 unfolding of the product of the final N − n
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TT-cores. Likewise, we can write the same unfolding as a product of four matrices,
see [12, Eq. (2.3)], i.e.,

(2.1) X(1:n) = (IIn ⊗ V(TX,1:n−1))V(TX,n)H(TX,n+1)(H(TX,n+2:N )⊗ IIn+1
).

Suppose we have two tensors Y and Z of the same dimension, and consider their
sum X. The cores of the tensor X can be expressed as

TX,n(:, in, :) =

[
TY,n(:, in, :)

TZ,n(:, in, :)

]
2 ≤ n ≤ N − 1,

and for the first and the last core, we have

TX,1(i1, :) =
[
TY,1(i1, :) TZ,1(i1, :)

]
and TX,N (:, iN ) =

[
TY,N (:, iN )
TZ,N (:, iN )

]
.

Let X ∈ Rm×n with m ≥ n. We denote the thin QR factorization of X as
X = QR, where Q ∈ Rm×n has orthonormal columns and R ∈ Rn×n is upper
triangular; we also write [Q,R] = QR(X) for use in algorithms. The SVD of X is
denoted by UΣV>, where the matrix U ∈ Rm×n has orthonormal columns containing
the left singular vectors, Σ ∈ Rn×n is a diagonal matrix with the singular values on
the diagonal and V ∈ Rn×n is an orthogonal matrix, whose columns contain the
right singular vectors. Assuming that the Householder QR algorithm is used and Q is
formed explicitly, the computational cost of the QR factorization is 4mn2− 4n3

3 +O(n2)
flops. Given a threshold ε > 0, we truncate the singular values of X to obtain a rank-k
approximation UkΣkV

>
k of matrix X, which satisfies ‖X −UkΣkV

>
k ‖F ≤ ε‖X‖F .

This is denoted as [Uk,Σk,Vk] = SVD(X, ε). The computational cost of computing
the SVD is O(mn2) flops.

2.2. Randomized matrix algorithms. An important component of our ap-
proach is the use of randomized matrix methods for low-rank matrix approximation.
In this subsection, we briefly review a few well-established randomized algorithms.

The first algorithm is the basic version of the randomized SVD proposed in [26].
Suppose we want to compute a low-rank approximation of a matrix X ∈ Rm×n; let
the target rank be denoted by r and we pick an oversampling parameter p such that
r+ p ≤ min{m,n}. We generate a random matrix Ω ∈ Rn×(r+p); in practice, we take
the entries of this matrix to be i.i.d. standard Gaussian random variables. Then, we
compute the product Y = XΩ and obtain its thin QR factorization Y = QR. The
main insight exploited by randomized SVD is that if the rank of X is close to r, or
the singular values of X decay rapidly beyond r, then the range of Q approximates
well the range of X in the sense that X ≈ QQ>X; we then use QQ>X as a low-rank
approximation to X. The computational cost of this approach is

CrandSVD = 2(r + p)mn+O(r2(m+ n)) flops.

Additional postprocessing can be performed to convert the low-rank approximation
in the SVD format, or to truncate the low-rank approximation to rank−r; see [26] for
additional details.

There is one variant of this algorithm that is of particular importance to our newly
proposed methods, the generalized Nyström method [41]. The generalized Nyström
method avoids the orthogonalization step when computing a low-rank approximation

5



by using a two-sided randomized approach. Let us define two Gaussian random ma-
trices Ω ∈ Rn×s and Ψ ∈ Rt×m, where r ≤ s ≤ min{m,n} (note that t also satisfies
a similar inequality). A low-rank approximation to X is computed as

(2.2) X ≈ Y(ΨXΩ)†Z,

where Y = XΩ and Z = ΨX. To implement the pseudoinverse, [41] suggests comput-
ing the QR factorization ΨXΩ = QR and then obtaining the low-rank approximation
(YR−1)(Q>Z). If the low-rank approximation is desired in the SVD format, this can
be done by additional post-processing. In [41], the author recommends setting the
sketch parameters as s = r and t = d1.5re. The associated computational cost is

CgenNys = 2mn(s+ t) +O(t2(m+ n) + ts2) flops.

2.3. Standard TT arithmetic. In this subsection, we review the standard
approach to TT-rounding, first proposed in [44], using the notation of [12]. We also
review the concepts of tensor contractions.

To explain the rounding procedure for TT-tensors, we consider the following anal-
ogy from matrices. Let Y = AB be an outer product matrix where A is m × r and
B is r×n and r ≤ min{m,n}. To obtain an approximation of Y with rank ` < r, we
employ an orthogonalization step followed by a compression step. In the orthogonal-
ization step, we want to make Y right orthogonal. That is, we compute the thin QR
factorization B> = QR, and then compute Z = AR>. This gives Y = AB = ZQ>,
where Q> has orthonormal rows. In the second step, we compress Z by computing
the rank-` truncated SVD Z ≈ UΣV>Z . To obtain an overall low-rank approximation
to Y, we compute V = QVZ , so that Y ≈ UΣV>.

Following [12], we say a tensor is right orthogonal if its horizontal unfoldings
H(TX,n) have orthonormal rows for n = 2, . . . , N (all except the first core). Simi-
larly, we say that a tensor is left orthogonal if its vertical unfoldings V(TX,n) have
orthonormal columns for n = 1, . . . , N − 1 (all except the last core).

Right-to-Left Orthogonalization. Suppose we are given a TT-tensor Y. To ob-
tain a right orthogonal TT-tensor X equivalent to Y, we first compute the thin QR
factorization QR = H(TY,N )> and set the core tensors TX,N−1 and TX,N as

V(TY,N−1)H(TY,N ) = V(TY,N−1)(QR)> = (V(TY,N−1)R>)︸ ︷︷ ︸
V(TX,N−1)

(Q>)︸ ︷︷ ︸
H(TX,N )

.

This procedure is continued through cores N − 1, . . . , 2 but we do not orthogonalize
the first core. The details of right-to-left orthogonalization are given in Algorithm 2.1
which will form the foundation for many of the subsequent algorithms. We can sim-
ilarly obtain a left orthogonal tensor by processing the modes starting from mode-1,
but we omit the details here.

TT-Rounding. Suppose, now, that we want to round the tensor Y in the TT
format, i.e., compress the TT format of a tensor by decreasing the TT-ranks {Rn}.
In the first step of the TT-rounding approach, we first obtain a tensor X that is
right-orthogonal by applying Algorithm 2.1. Starting with mode-1, for each mode,
we compute a low-rank approximation of the vertical unfolding V(TX,n); rather than
computing an SVD directly, we first compute the thin QR factorization of V(TX,n);
followed by an SVD of the upper triangular factor R. We then obtain a low-rank
approximation V(TX,n) ≈ ÛΣ̂V̂

>
. The number of singular values and vectors retained

6



Algorithm 2.1 Right-to-Left Orthogonalization
Require: A tensor Y in TT format
Ensure: X is right-orthogonal tensor equivalent to Y

1: function X = OrthogonalizeRL(Y)
2: TX,N = TY,N

3: for n = N down to 2 do
4: [H(TX,n)>,R] = QR(H(TX,n)>) . thin QR factorization
5: V(TX,n−1) = V(TY,n−1) ·R> . TX,n−1 = TY,n−1 ×3 R>

6: end for
7: end function

in the low-rank approximation, depend on the threshold ε = ‖Y‖√
N−1ε0, where ε0 is a

user-defined threshold that controls the overall accuracy. We then rewrite V(TX,n)

by combining it with the low-rank factor as V(TX,n) = V(TX,n)Û. The other two

factors Σ̂V̂
>
are combined with the horizontal unfolding H(TX,n+1) for processing at

the next step. This process is terminated after N − 1 steps and the resulting tensor
X satisfies ‖X− Y‖ ≤ ε0‖Y‖. The details are given in Algorithm 2.2.

Algorithm 2.2 TT-Rounding
Require: A tensor Y in TT format, user-defined threshold ε0 > 0
Ensure: A tensor X in TT format with reduced ranks such that ‖X− Y‖ ≤ ε0‖Y‖
1: function X = TT-Rounding(Y, ε0)
2: X = OrthogonalizeRL(Y)
3: Compute ‖Y‖F and the truncation threshold ε = ‖Y‖√

N−1ε0
4: Set TX,1 = TY,1.
5: for n = 1 to N − 1 do
6: [V(TX,n),R] = QR(V(TX,n)) . thin QR factorization
7: [Û, Σ̂, V̂] = SVD(R, ε) . ε-truncated SVD factorization
8: V(TX,n) = V(TX,n)Û . TX,n = TX,n ×3 Û

9: H(TX,n+1) = Σ̂V̂
>
H(TX,n+1) . TX,n+1 = TX,n+1 ×1 (Σ̂V̂

>
)

10: end for
11: end function

Right-to-Left Partial Contraction. We consider two TT-tensors X and Y with
ranks {RX

j } and {RY
j }, respectively. For n = 2, . . . , N we define the partial contraction

matrices

(2.3) Wn−1 = H(TX,n:N )H(TY,n:N )> ∈ RR
X
n−1×R

Y
n−1 .

These partial contractions can be computed sequentially as

V(TZ,n) = V(TX,n)Wn,

Wn−1 = H(TZ,n)H(TY,n)>
(2.4)

for n = 2, . . . , N − 1, with WN−1 = H(TX,N )H(TY,N )>. Here Z is a temporary
TT-tensor with compatible dimensions and ranks.

The process of computing the matrices {Wn−1}Nn=2 according to (2.4) is called
a right-to-left partial contraction of tensors X and Y, and is illustrated in Figure 2.3.
The corresponding algorithm is presented in Algorithm 2.3.
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TX,1

TY,1

TX,2

TY,2

TX,3

TY,3

TX,4

TY,4

RX
1

RY
1

RX
2

RY
2

RX
3

RY
3

I1 I2 I3 I4

(a) Initial structure

TX,1

TY,1

TX,2

TY,2

TX,3

TY,3

RX
1

RY
1

RX
2

RY
2

I1 I2 I3 W3

RX
3

RY
3

(b) W3

TX,1

TY,1

TX,2

TY,2

RX
1

RY
1

I1 I2 W2

RX
2

RY
2

(c) W2

TX,1

TY,1

I1 W1

RX
1

RY
1

(d) W1

Fig. 2.3. Right-to-Left partial contraction steps for N = 4.

Algorithm 2.3 Right-to-Left Contraction of Tensors X and Y.
Require: Tensors X,Y with consistent dimensions in TT format and ranks {RX

n }
and {RY

n}, respectively.
Ensure: Matrices {Wn} satisfy Wn = H(TX,n+1:N )H(TY,n+1:N )> for 1 ≤ n < N
1: function [{Wn}] = PartialContractionsRL(X,Y)
2: WN−1 = H(TX,N )H(TY,N )>

3: for n = N − 1 down to 2 do
4: V(TZ,n) = V(TX,n)Wn . TZ,n = TX,n ×3 Wn, for temporary TZ,n

5: Wn−1 = H(TZ,n)H(TY,n)> . matrix multiplication, Wn−1 is
RX
n−1 ×RY

n−1
6: end for
7: end function

Detailed analysis of the overall computational costs of Right-to-Left Orthogonal-
ization (Algorithm 2.1), TT-Rounding (Algorithm 2.2) and Right-to-Left Contraction
(Algorithm 2.3) is presented in Appendix A.

3. Randomized Algorithms for TT Rounding. In this section, we propose
three new randomized algorithms to perform rounding of a tensor in the TT format,
i.e., given an original TT-tensor Y with TT-ranks {Rn} we seek a compressed TT-
tensor representation X with a priori known target ranks {`n}. In randomized SVD,
see Subsection 2.2, it is common to include an oversampling term; that is, if we seek
a rank-r decomposition of a matrix X, we use the number of samples (alternatively,
columns of Ω) as ` = r + p, where r is the target rank and p is the oversampling
parameter. The resulting low-rank approximation QQ>X is of rank `. However, in
the TT case, to save on notation, when we say target TT-ranks {`n}, we assume that
this rank automatically includes the necessary oversampling parameter.

3.1. Orthogonalize-then-Randomize. The first algorithm we propose is very
similar to the standard TT-rounding algorithm; the main difference is that we replace
the truncated SVD step in Algorithm 2.2 with the basic version of the randomized
SVD reviewed in Subsection 2.2. The nomenclature of this algorithm is clear from
the fact that there are two phases in this approach: an (already discussed) orthog-
onalization phase followed by a compression phase which utilizes randomized SVD.

In the first version, we assume that given a tensor Y with TT-ranks {Rn} we want
to obtain a compressed representation with ranks {`n}; that is, we assume that the
target TT-ranks are known in advance. The first phase, i.e., the orthogonalization
phase is accomplished using Algorithm 2.1 to obtain the tensor Y which is right-
orthogonal and equivalent to Y. In the second phase, we loop over the cores of the

8



Algorithm 3.1 TT-Rounding: Orthogonalize-then-Randomize
Require: A tensor Y in TT format with ranks {Rn}, target TT-ranks {`n}
Ensure: A tensor X in TT format with ranks {`n}
1: function X = TT-Rounding-OrthRand(Y, {`n})
2: Y = OrthogonalizeRL(Y)
3: for n = 1 to N − 1 do
4: Zn = V(TY,n) . TY,n is `n−1 × In ×Rn
5: Yn = ZnΩn . form the sketched matrix
6: [V(TX,n),∼] = QR(Yn) . thin QR to compute an orthonormal basis
7: Mn = V(TX,n)>Zn . form `n ×Rn matrix
8: H(TX,n+1) = MnH(TY,n+1) . TX,n+1 = TY,n+1 ×1 Mn

9: end for
10: end function

tensor Y (excluding the last core): for each core, we apply randomized SVD to the
vertical unfolding Zn = V(TY,n). That is, we compute Qn such that

Zn ≈ QnQ>nZn,

by first generating a random Gaussian matrix Ωn ∈ RRn×`n . We then compute
Yn = ZnΩn and its thin QR factorization to obtain an orthonormal basis Qn for the
range of Yn. Finally, we set V(TX,n) = Qn and H(TX,n+1) = (Q>nZn)H(TY,n+1) to
obtain the compressed tensor X. The details are given in Algorithm 3.1.

We also investigated a version of Algorithm 3.1 that does not require the ranks of
the rounded tensors to be known in advance. In this approach, we replace Lines 5 and 6
of Algorithm 3.1 with a randomized range finder algorithm [39, 53]. This adaptive
method would produce a tensorX that satisfies the desired tolerance ‖X−Y‖ ≤ ε0‖Y‖,
where ε0 is a user defined threshold. While this approach produced TT-tensors with
the desired tolerance, in numerical experiments it did not yield significant speedup
over deterministic TT-rounding (Algorithm 2.2). Some insight into this behavior is
given in Subsection 3.5 which shows that the orthogonalization step is the dominant
computational cost of deterministic and Orthogonalize-then-Randomize algorithms.
Therefore, we did not pursue this approach further.

3.2. Randomize-then-Orthogonalize. To motivate the next algorithm, we
consider the overall computational cost of Algorithm 3.1, see Subsection 3.5, which is
dominated by the first, orthogonalization, phase of the algorithm. First, we consider
a new Randomize-then-Orthogonalize algorithm that uses randomization to reduce
the overall computation cost of the TT-rounding procedure. It works by avoiding
an expensive orthogonalization of the original TT-tensor Y with TT-ranks {Rn} and
instead uses randomization to reduce the computational cost. In contrast to the next
approach in Subsection 3.3 (Two-Sided-Randomization), here we use randomization
only on one side.

We first offer a way to construct random Gaussian TT-tensors whose cores are
composed of independent random Gaussian entries.

Definition 3.1 (Random Gaussian TT-Tensor). Given a set of target TT-ranks
{`n}, we generate a random Gaussian TT-tensor R ∈ RI1×...IN such that each core
tensor TR,n ∈ R`n−1×In×`n is filled with random, independent, normally distributed
entries with mean 0 and variance 1/(`n−1In`n) for 1 ≤ n ≤ N .
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By this definition, while the cores of R have independent entries, the entries of
the full tensor themselves are not independent. This normalization is chosen such that
E‖TR,n‖2F = 1 and is sometimes necessary to ensure that no overflow occurs during
the rounding computations. Note that constructing this random tensor requires only
generating and storing

∑N
n=1 `n−1`nIn random entries. A related but distinct defi-

nition for a Gaussian TT-tensor is given in [47], but the approach taken here differs
considerably in how we use the randomized tensor.

In Algorithm 3.2, we first generate a random Gaussian tensor R with given target
TT-ranks {`n} following Definition 3.1. Next, we use the efficient multiplication of
tensor R with a given tensor Y, see Algorithm 2.3, to obtain the sketches (sometimes
also referred to as partial random projections) {Wn} of Y (randomization phase).
A visualization of this process is provided in Figure 3.1. Finally, we construct a
left-orthogonal compressed TT-tensor X. Starting with n = 1 and TX,1 = TY,1, we
compute the QR factorization of the sketched matrix, i.e.,

[V(TX,n)H(TY,n+1:N )]H(TR,n+1:N )> = V(TX,n)Wn = QnRn.

Since at the nth step the first n − 1 cores of X are already orthogonalized, they
do not need to be considered explicitly in the above factorization. By projecting
V(TX,n)H(TY,n+1:N ) onto the column space of Qn, we approximate the product of
the final N − n+ 1 cores as

V(TX,n)H(TY,n+1:N ) ≈ QnQ>nV(TX,n)H(TY,n+1:N ) = QnMnH(TY,n+1:N ).

Then, the cores are updated, i.e., V(TX,n) = Qn and H(TX,n+1) = MnH(TY,n+1).
It is important to mention that the Randomize-then-Orthogonalize approach produces
a left-orthogonal tensor X. We can use this observation to compress the tensor fur-
ther. Therefore, if the ranks are not known a priori, then we choose the ranks to be
sufficiently large and truncate them further by using Algorithm 2.2. In particular,
since the output tensor of Algorithm 3.2 is left orthogonal, we can skip the orthogo-
nalization phase (Line 2 of Algorithm 2.2), and execute Lines 3 to 10. This is what
we do in our numerical experiments when the rank is not known a priori.

Algorithm 3.2 TT-Rounding: Randomize-then-Orthogonalize
Require: A tensor Y in TT format with ranks {Rn}, target TT-ranks {`n}
Ensure: A tensor X in TT format with ranks {`n}
1: function X = TT-Rounding-RandOrth(Y, {`n})
2: Select a random Gaussian TT-tensor R with target TT-ranks {`n}
3: {Wn} = PartialContractionsRL(Y,R) . compute partial random

contractions
4: TX,1 = TY,1

5: for n = 1 to N − 1 do
6: Zn = V(TX,n) . TX,n is `n−1 × In ×Rn
7: Yn = ZnWn . form the sketched matrix
8: [V(TX,n),∼] = QR(Yn) . thin QR to compute an orthonormal basis
9: Mn = V(TX,n)>Zn . form `n ×Rn matrix

10: H(TX,n+1) = MnH(TY,n+1) . TX,n+1 = TY,n+1 ×1 Mn

11: end for
12: end function

10
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Fig. 3.1. Random projection for the Randomize-then-Orthogonalize Algorithm 3.2.

Algorithm 3.3 TT-Rounding: Two-Sided-Randomization (Generalized Nyström)
Require: A tensor Y in TT format with ranks {Rn}, target TT-ranks {`n} and {ρn}
Ensure: A tensor X in TT format with ranks {`n}
1: function X = TT-Rounding-RandOrth(Y, {`n})
2: Generate random Gaussian TT-tensor L with ranks {`n}
3: Generate random Gaussian TT-tensor R with ranks {ρn} . choose ρn > `n
4: {WL

n} = PartialContractionsLR(Y,L)
. Precompute sketches from the left

5: {WR
n } = PartialContractionsRL(Y,R)

. Precompute sketches from the right
6: for n = 1 to N − 1 do
7: [Un,Σn,Vn] = SVD(WL

nWR
n ) . Compute SVD of WL

nWR
n

. Vn is ρn × `n
8: Ln = WR

nVn(Σ†n)1/2 . Determine internal Rn × `n left factor Ln
9: Rn = (Σ†n)1/2U>nWL

n . Determine internal `n ×Rn right factor Rn

10: end for
11: V(TX,1) = V(TY,1)L1

12: for n = 2 to N − 1 do
13: H(TX,n) = Rn−1H

(
V(TY,n)Ln

)
. TX,n = TY,n ×1 Rn−1 ×3 Ln
. hence TX,n is `n−1 × In × `n

14: end for
15: H(TX,N ) = RN−1H(TY,N )
16: end function

3.3. Two-Sided-Randomization. Analogous to the one-sided Algorithm 3.2,
we start with generating two TT random Gaussian tensors L and R with given target
TT-ranks {`n} and {ρn} (with ρn > `n) and computing the sketches {WL

n}, {W
R
n } of

Y from the left and right, respectively (randomization phase, see Figure B.2). Next,
for each n = 1, . . . , N − 1 we compute the SVD of a product of partial contractions
WL

nWR
n , i.e., WL

nWR
n = UnΣnV>n , and form left and right factor matrices

(3.1) Ln = WR
nVn(Σ†n)1/2 and Rn = (Σ†n)1/2U>nWL

n .

In order to highlight the significance of matrices Ln and Rn, we consider the following
unfolding of the TT-tensor Y

Y(1:n) = V(TY,1:n)H(TY,n+1:N ),
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with factors V(TY,1:n) ∈ R(I1···In)×Rn and H(TY,n+1:N ) ∈ RRn×(In+1···IN ). Similarly,
we define matrices

Ψn := V(TL,1:n)> ∈ R`n×(I1···In),

Ωn := H(TR,n+1:N )> ∈ R(In+1···IN )×ρn

as the partial unfoldings of random Gaussian TT-tensors L and R, respectively. Then
multiplying matrix Y(1:n) on the left by Ψn and on the right by Ωn yields

ΨnY(1:n)Ωn = (ΨnV(TY,1:n))(H(TY,n+1:N )Ωn) = WL
nWR

n .

Following identity (2.2) illustrating the main idea of the Generalized Nyström method
for matrices discussed in Subsection 2.2, we have

Y(1:n) ≈
(
Y(1:n)Ωn

)(
ΨnY(1:n)Ωn

)†(
ΨnY(1:n)

)
= V(TY,1:n)WR

n

(
WL

nWR
n

)†
WL

nH(TY,n+1:N )

= V(TY,1:n)LnRnH(TY,n+1:N ),

see Figure B.3.
Having all left and right factors at hand, for each core of the tensor Y (treating

the first and last core separately), we distribute them according to the formula

H(TX,n) = Rn−1H(V(TY,n)Ln)

forming the cores of the resulting tensor X, see Figure B.4.
In contrast to Algorithm 3.2, the Two-Sided-Randomization approach does not

produce an orthogonal tensor. However, with a little restructuring, it can be adapted
to produce an orthogonal tensor (we do not discuss that here). This variation may
be useful for the case when the target TT-ranks are not known in advance, and
producing an orthogonal tensor can be used in conjunction with Algorithm 2.2 to
further compress the tensor.

3.4. Rounding of TT-sums. One of the most common arithmetic operations
that depends on TT-rounding is TT-summation, i.e., we want to compress a tensor
Y that is available as the sum of s TT-tensors: Y = Y(1) + · · · + Y(s). To reuse
existing algorithms, there are two options available to us. For example, we can form
the TT-tensor Y explicitly and then apply one of the compression algorithms pro-
posed previously. As we will argue in Subsection 3.5, the computational costs of this
approach has cubic scaling with respect to the number of summands s using the TT-
rounding approach, and a quadratic scaling with respect to s using the randomized
approaches (Randomize-then-Orthogonalize and Two-Sided-Randomization). This is
computationally infeasible as s becomes large. Alternatively, we can form the partial
sum Y(1) + Y(2), compress this partial sum, add the resulting truncated term to the
summand Y(3) and proceed in the same way with remaining terms. Variations of this
approach can be performed using ideas from the summation methods described in [27,
Chapter 4.1]. These approaches scale linearly with s, but can result in large errors in
the compressed representation due to the repeated truncation.

In this subsection, we show how to combine the addition and randomized rounding
operations to reduce further the computational costs, which is particularly effective
when the number of summands s is large. The basic idea is to exploit the nonzero
structure of the TT-cores of the sum of TT-tensors to avoid computing with zeros.
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Algorithm 3.4 TT-Rounding of a Sum: Randomize-then-Orthogonalize

Require: Tensors {Y(j)}1≤j≤s in TT format with ranks {R(j)
n }1≤j≤s, target TT-

ranks {`n}
Ensure: A tensor X ≈

∑s
j=1 Y

(j) in TT format with ranks {`n}
1: function X = TT-Rounding-sum-RandOrth({Y(j)}1≤j≤s, {`n})
2: Select random Gaussian TT-tensor R with ranks {`n}
3: for j = 1 to s do
4:

{
W(j)

n

}
= PartialContractionsRL(Y(j),R) . precompute sketches

from the right
5: end for
6: TX,1 =

[
TY(1),1 . . . TY(s),1

]
7: for n = 1 to N − 1 do
8: Zn = V(TX,n) . TX,n is `n−1 × In ×

∑s
j=1R

(j)
n

9: Yn = V(TX,n)

W(1)
n
...

W(s)
n

 . complete random sketch

10: [V(TX,n),∼] = QR(Yn) . thin QR factorization
11:

[
M(1)

n . . . M(s)
n

]
= V(TX,n)>Zn

12: if n < N − 1 then . exploit structure in next internal core
13: H(TX,n+1) =

[
M(1)

n H
(
TY(1),n+1

)
· · · M(s)

n H
(
TY(s),n+1

)]
14: else

15: TX,N =

s∑
j=1

M
(j)
n−1TY(j),N

16: end if
17: end for
18: end function

Applying the orthogonalization phase, as required to perform the deterministic trun-
cation phase, requires assembling the TT representation of the sum. Furthermore,
the orthogonalization and multiplication by the triangular factor destroys the struc-
ture in the middle cores. By using randomization, we can avoid this explicit TT
assembly of the sum and avoid unnecessary computations on zeros. Algorithm 3.4
provides the pseudocode for rounding the sum of s input TT-tensors. To simplify the
notation, we derive the efficient computations considering the case s = 2, as the gen-
eralization will be clear. Let Y and Z be two TT-tensors and consider the TT-tensor
X = Y+Z. Let R be a given random Gaussian TT-tensor and let {WY

n} and {W
Z
n },

for n = 1, . . . , N − 1 be the right-to-left partial contractions of Y and Z with R. We
have

X(1:n) = V(TX,1:n)H(TX,n+1:N ) =
[
V(TY,1:n) V(TZ,1:n)

] [H(TY,n+1:N )
H(TZ,n+1:N )

]
,
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and by using (2.1),

V(TX,1:n) =
[
(IIn ⊗ V(TY,1:n−1)) (IIn ⊗ V(TZ,1:n−1))

] [V(TY,n)
V(TZ,n)

]
,

H(TX,n+1:N ) =

[
H(TY,n+1)

H(TZ,n+1)

] [
H(TY,n+2:N )⊗ IIn+1

H(TZ,n+2:N )⊗ IIn+1

]
.

The matrix WX
n can be expressed as

WX
n = H(TX,n+1:N )H(TR,n+1:N )> =

[
H(TY,n+1:N )
H(TZ,n+1:N )

]
H(TR,n+1:N )> =

[
WY

n

WZ
n

]
.

This justifies the procedure in Algorithm 3.4 of computing the partial contractions
separately for each summand (Line 4) and concatenating them (Line 9).

After the QR factorization of the projected matrix produces the truncated core,
we compute the contraction between the new and old cores (Line 11) and store the
result in a matrix Mn =

[
MY

n MZ
n

]
of size `n × (RY

n + RZ
n ). This matrix is now

multiplied from the right by H(TX,n+1:N ) to compute the updated right factor of
X(1:n). This multiplication can be absorbed by the (n+ 1)th core as follows:

MnH(TX,n+1:N ) =
[
MY

n MZ
n

] [H(TY,n+1)
H(TZ,n+1)

] [
H(TY,n+2:N )⊗ IIn+1

H(TZ,n+2:N )⊗ IIn+1

]
,

=
[
MY

nH(TY,n+1) MZ
nH(TZ,n+1)

] [H(TY,n+2:N )⊗ IIn+1

H(TZ,n+2:N )⊗ IIn+1

]
.

Hence we update H(TX,n+1) as in Line 13. For n = N − 1 we have

TX,N =
[
MY

N−1 MZ
N−1

] [TY,N

TZ,N

]
= MY

N−1TY,N + MZ
N−1TZ,N .

Generalizing this expression to s terms yields Line 15.

3.5. Computational costs. To analyze the computational cost, we make the
following assumptions that will simplify the analysis. Let Y ∈ RI×···×I be a tensor of
order N with ranks (1, R, . . . , R, 1) in TT format. We want to compress Y to obtain
a TT-tensor X with ranks (1, `, . . . , `, 1). Here and in Appendix A, we assume that
` = Θ(R).

3.5.1. Randomized compression algorithms. We now analyze the compu-
tational cost of Algorithm 3.1, Algorithm 3.2, and Algorithm 3.3.

Orthogonalize-then-Randomize (Algorithm 3.1). We denote the overall computa-
tional cost of Algorithm 3.1 by COtR. Line 2 of Algorithm 3.1 invokes Algorithm 2.1,
and its cost is COrth, see Appendix A. We now analyze the cost of the loop in Lines 3
to 9. In Line 5, we multiply the matrix V(TX,n) of size I`×R with the random matrix
of size R× `; this costs 2IR`2 flops. In Line 6, we compute the thin QR factorization
of the matrix Yn of size I` × `, which costs 4I`3 + O(`3) flops. Finally, in Lines 7
and 8, we have two different matrix-matrix multiplications which cost 2IR`2 + 2IR2`
flops, respectively. The total computational cost of Algorithm 3.1 is

COtR = COrth + (N − 2)(2IR2`+ 4IR`2 + 4I`3) +O(IR2 +NR3)

= I(N − 2) · (5R3 + 2R2`+ 4R`2 + 4`3) +O(IR2 +NR3) flops.
14



Randomize-then-Orthogonalize (Algorithm 3.2). Denoting the total cost of Algo-
rithm 3.2 with CRtO, we analyze the main components that contribute to the total
computational cost. Line 3 invokes Algorithm 2.3 with the corresponding cost de-
noted by CContr, see Appendix A. Lines 7 and 9 contribute by a factor of 2IR`2 that
is the cost of performing the multiplication V(TX,n)Wn of sizes `I × R with R × `
and V(TX,n)TZn of sizes ` × I` and I` × R that prepare the matrices Yn and Mn,
respectively, for the next steps. The term 4I`3 +O(`3) represents the cost of the thin
QR factorization, in Line 8, of the matrix Yn of size I` × `. Line 10 that involves
multiplication of matrices of size `×R and R×IR which costs 2IR2` flops. The total
cost of Algorithm 3.2 is

CRtO = CContr + (N − 2)(2IR2`+ 4IR`2 + 4I`3) +O(IR2 +NR3)

= I(N − 2) · (4R2`+ 6R`2 + 4`3) +O(IR2 +NR3) flops.

Two-Sided-Randomization (Algorithm 3.3). Here we analyze the total cost of
Algorithm 3.3 and denote it by C2SR. The cost of Lines 4 and 5 is 2CContr. Here,
we recall that the cost of the partial contractions from the left and from the right
is the same since we assume that ranks are the same, i.e., ρn = `n = `. However,
in practice, we choose ρn > `n to be different for numerical stability. There are two
other contributions to the cost that come from two different matrix multiplication:
first, of sizes ` × R and R × IR, and second, of sizes ` × R and R × I`. The cost of
the for loop starting with Line 12 is O(NR2). Hence, the total computational cost of
Algorithm 3.3 is

C2SR = 2 · CContr + (N − 2)(2IR2`+ 2IR`2) +O(NR2)

= I(N − 2) · (6R2`+ 6R`2) +O(IR`+NR2) flops.

Nakatsukasa [41] suggests oversampling from the left, i.e., taking ρn = d1.5`ne. We
follow this suggestion in our numerical experiments. With this assumption, the cost
is slightly higher, i.e., I(N − 2) · (7R2` + 8.5R`2) +O(IR` + NR2) flops, due to the
increased cost of the contraction (Algorithm 2.3) with a larger random tensor.

Table 3.1
Summary of the computational costs (discarding lower order terms) of the randomized algo-

rithms proposed in this paper. For completeness, we also include the computational costs of the de-
terministic algorithms in Subsection 2.3. Orth and Contr refer to Algorithm 2.1 and Algorithm 2.3,
respectively.

Algorithms Computational cost (flops) Simplified Cost (flops)
Orth (N − 2)I(5R3) −
Contr (N − 2)I(2R2`+ 2R`2) −

TT-Rounding (N − 2)I(5R3 + 6R2`+ 2R`2) (N − 2)IR3(5 + 6β + 2β2)
Orth-then-Rand (N − 2)I(5R3 + 2R2`+ 4R`2 + 4`3) (N − 2)IR3(5 + 2β + 4β2 + 4β3)
Rand-then-Orth (N − 2)I(2R2`+ 4R`2 + 4`3) (N − 2)IR3(4β + 6β2 + 4β3)
Two-Sided-Rand (N − 2)I(6R2`+ 6R`2) (N − 2)IR3(6β + 6β2)

Comparison of different algorithms. To enable the comparison of the different
algorithms, we set a target rank as ` = βR, where β ∈ (0, 1] is the ratio between
the target rank ` and the current rank R. This allows us to compare the different
algorithms more clearly. A summary of the dominant costs of the algorithms is pro-
vided in Table 3.1. For simplicity, we also provide a simplified representation of the
computational costs with β = `/R. In Figure 3.2, we plot the speedup of the ran-
domized algorithms compared to the TT-Rounding algorithm; we used the simplified
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Fig. 3.2. Illustration of the speedups obtained by the randomized algorithms compared with the
TT-rounding. Here β = `/R is the ratio between the target rank and the original rank of the tensor.
The speedup computations are based on the simplified cost analysis in Table 3.1.

representation of the costs while generating the figure. It can be easily seen that
all the proposed methods are faster than the TT-Rounding algorithm. However, the
speedup using the Orthogonalize-then-Randomize algorithm is very incremental. In
contrast, the other two algorithms, Randomize-then-Orthogonalize and Two-Sided-
Randomization, have very similar costs (Randomize-then-Orthogonalize is slightly
more efficient for smaller β) and have much higher speedups especially if β � 1. If
β ≈ 1, both algorithms are very close to the TT-Rounding algorithm. Therefore, the
proposed methods are most efficient if β � 1, i.e., the target rank ` is much smaller
compared to the original rank R.

3.5.2. Rounding of TT-sums. To explain the benefits of the algorithm for
rounding TT-sums in Subsection 3.4, consider the summation of s tensors of order
N (size I in each dimension) each with TT-ranks (1, R, . . . , R, 1). Suppose we form
the TT-tensor Y, which represents the summation Y =

∑s
j=1 Y

(j), explicitly. The
intermediate cores have size sR× I × sR; the first core is of size I × sR and the last
core is of size sR × I. Suppose the target compression rank in each mode is `. To
leading order, the cost of executing TT-Rounding and Orthogonalize-then-Randomize
is O(Ns3R3I). In contrast, the cost of using Randomize-then-Orthogonalize and the
Two-Sided-Randomization approach are both O(N`s2R2I). This can be beneficial if
the number of summands s is large, or the rank R is large. This simple cost analysis
does not take into account any structure present in the summation.

Carefully exploiting the structure, as in Subsection 3.4, can reduce this cost. In
particular, by using TT-Rounding of a sum with s tensors of order N with Randomize-
then-Orthogonalize summarized in Algorithm 3.4 the leading order computational
cost is O(N`sR2I) flops. Notice that by exploiting the structure of the tensor and
using randomization, the leading order of the cost is decreased to be linear in s in
contrast to cubic in s when no structure was taken into account and the TT-sum
tensor was formed explicitly. This decrease in the computational cost is obviously
more pronounced when the number of summands s is large. In what follows, we
present the analysis of the computational cost of computing the sum of s TT-tensors
by randomization and by exploiting the underlying tensor structure.

TT-rounding of a sum: Randomize-then-Orthogonalize (Algorithm 3.4). We an-
alyze the computational cost of Algorithm 3.4 which we denote by CRtOsum. The
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leading order term is sourced from two main contributions (1) Line 4 that executes
Algorithm 2.3 s times resulting in a total computational cost of sI(N−2)(2R`2+2R2`)
flops and (2) Line 13 that represents s multiplications between matrices of size IR×R
and R× ` resulting in a total cost of 2sIR2` flops. Next we analyze the source of the
second leading order term present in the total cost. Line 9 contributes by a factor of
two to the second leading term with a cost 2sIR`2 flops resulting from multiplying
matrices of size I`× sR and sR × `. Another factor of two comes from the multipli-
cation of two matrices of size `× I` and I`× sR in Line 11, resulting in a total cost
of 2sIR`2 flops. The last factor of two comes from the second leading order term of
Algorithm 2.3. Computing the thin QR factorization of the matrix of size I` × ` in
Line 10 costs 4I`3 flops. Hence, the total cost of Algorithm 3.4 is

CRtOsum = s · CContr + (N − 2)(2sIR2`+ 4sIR`2 + 4I`3) +O(NIR2)

= I(N − 2) · (4sR2`+ 6sR`2 + 4`2) +O(NIR2) flops.

4. Numerical results. In this section, we illustrate numerically the perfor-
mance of the newly developed algorithms using tensor data in TT format. We consider
both synthetic as well as more realistic test examples. Additional numerical exper-
iments are available in Appendix C. All the numerical experiments were performed
on Matlab R2021a running on a laptop computer with CPU Intel(R) Core(TM)
i9-9980H and 64GB of RAM, using multithreading with 4 computational threads.
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Fig. 4.1. Comparison of error between a low-rank tensor and full rank perturbed tensor, and
timings using the deterministic and randomized TT-rounding algorithms for ε perturbed tensor for
different values of perturbation ε. Statistics were based on 5 independent runs.
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4.1. TT-tensor with a fixed target rank. In our first numerical experiment,
we illustrate the performance of our rounding algorithms by rounding a random TT-
tensor with a known low-rank representation. Throughout, we choose the ranks of the
right side randomization in the Two-Sided-Randomization approach (Algorithm 3.3)
to be ρ = d1.5`e as discussed in Subsection 3.5.1.

The random TT-tensor X is constructed by perturbing a random TT-tensor X1

with the random TT-tensor εX2 as follows: X = X1 + εX2. TT-tensors X1, X2 ∈
R100×···×100 are order N = 10 normalized random TT-tensors of ranks (1, 50, ..., 50, 1)
(normalized according to their dimension as described in Definition 3.1), and ε is
a perturbation scalar taking the values ε ∈ {10−2, 10−6, 10−10}. The ranks of the
perturbed tensor X are (1, 50 + 50, ..., 50 + 50, 1), and the perturbation parameter ε
determines how well tensor X is approximated by the lower rank tensor X1, i.e., if ε
is small, then X1 is a good rank-(1, 50, ..., 50, 1) approximation of X.

We round the random TT-tensor X using Algorithms 2.2 and 3.1 to 3.3 to have
ranks (1, `, . . . , `, 1), where we vary the parameter ` from 35 to 80 by an increment
of 5. We present these results in Figure 4.1. The approximation error is the relative
norm error between tensor X and the approximate rounded tensor X̂, i.e., ‖X−X̂‖‖X‖ .
We also present the time speedup (computed with the average of 5 independent runs)
of the randomized algorithms compared to the deterministic algorithm.

For all values of perturbation ε, the error resulting from the deterministic algo-
rithm (Algorithm 2.2) decreases slightly until the ranks of the rounded tensor are
` = 50. When ` > 50, the error appears to be very close to ε. The errors resulting
from the randomized algorithms (Algorithms 3.1 to 3.3) are greater than the error
resulting from the deterministic algorithm. Additionally, the randomized algorithms
produce a more accurate approximation when the target rank is larger and are more
accurate when ε is small. The Orthogonalize-then-Randomize and the Randomize-
then-Orthogonalize method (Algorithms 3.1 and 3.2) produce a rounded tensor with
similar levels of accuracy while the Two-Sided-Randomization approach is the least
accurate. For smaller values of ε, there is less difference in the accuracy between
the different algorithms. The Randomize-then-Orthogonalize algorithm is the fastest
compared to the deterministic algorithm followed by the Two-Sided-Randomization
and Orthogonalize-then-Randomize algorithms.

4.2. Solving a parametric PDE in the TT format. As a realistic test ex-
ample, we consider the parameter dependent PDE referred in the literature as the
cookie problem [37, 52], see Appendix D for details. Since it is known that the set of
solutions of problem (D.1) admits a low-rank representation [23, 13], we consider a
global linear system encapsulating all these linear systems, i.e.,(

N∑
i=1

Ai,1 ⊗ . . .⊗Ai,N

)
X = F,

where A1,1 is the discretization of the operator over the spatial domain with constant
parameter values, for each 2 ≤ i ≤ N , Ai,1 is the discretization of the operator over the
domain multiplied by the characteristic function corresponding to the corresponding
subdomain and Ai,i is a diagonal matrix containing the parameter values for the
corresponding parameter, and for each 2 ≤ j 6= i ≤ N , Ai,j is the identity matrix.
We use the TT-GMRES algorithm [16] to solve this global linear system of equations.
The preconditioned TT-GMRES algorithm builds the basis vectors in TT format
V1,V2, . . . using the inexact Arnoldi procedure; since at each step, the corresponding
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TT-tensors are rounded, this results in an inexact Krylov subspace method. The main
bottleneck is the computation of two linear combinations in each iteration. First, the
following sum of N tensors with the same ranks as Vk is formed when applying the
operator to the k-th basis vector computed at the previous iteration, i.e.,

W =

N∑
i=1

(Ai,1 ⊗ . . .⊗Ai,N )Y,

after application of the preconditioner, Y =

((∑N
i=1 Ai,1

)−1
⊗ I ⊗ · · · ⊗ I

)
VK. Sec-

ond, a linear combination of k + 1 tensors appears when using the Gram-Schmidt
algorithm to orthogonalize W with respect to the previous basis vectors,

Z =

W−
k∑
j=1

hjkVk

 , Vk+1 =
1

hk+1,k
Z,

{
hjk = 〈Vk,W〉, j = 1, . . . , k,

hk+1,k = ‖Z‖F .

In both cases, the addition of TT-tensors is followed by a TT-rounding operation in
order to reduce the ranks and keep the computations tractable. Hence, these steps are
amenable to acceleration by using the randomized Algorithm 3.4 as a rounding pro-
cedure in the aforementioned computations. Because the second linear combination
involves k+ 1 summands, the randomized implementation reduces greatly the cost of
later TT-GMRES iterations in particular, as the leading order of its computational
cost is decreased from cubic to linear in k, as detailed in Subsection 3.5.

We perform numerical experiments with N = 5 using a piecewise linear finite
element discretization with the mesh presented in Figure D.1, for various choices of the
number of parameter samples, I = I2 = . . . = IN , with values of ρi distributed linearly
between 1 and 10. The relative tolerance of the TT-GMRES solver is set to 10−8. We
compare the naive, deterministic implementation of the preconditioned TT-GMRES
algorithm with one using randomized summation and rounding steps. Results of the
comparison are reported in Figure 4.2. On the right, we display all internal ranks of
the TT representation of the Krylov vector computed at that iteration. We observe
that the ranks of the basis vectors and number of iterations are the same using both
implementations, and they depend only weakly on the dimension I of the parameter
modes of the tensors. The speedup achieved by the randomized approach increases
consistently with the number of parameter samples. Taking a closer look at the timing
statistics as presented in Figure 4.3, we note that the computation and rounding of the
linear combinations identified above indeed dominates the computational cost in both
cases, and is a clear computational bottleneck for the deterministic implementation
in particular, as the ranks of the sum tensor increase to as much as 2491 in these
experiments. This explains the remarkable speedup obtained with the randomized
approach.

5. Conclusions and outlook. In this paper, we present randomized algorithms
for rounding a tensor, assuming that we have an initial representation in the TT
format. This initial representation may not be optimal in terms of storage, and
the randomized compression techniques can be used to obtain a more efficient rep-
resentation. We derive three different algorithms: Orthogonalize-then-Randomize,
Randomize-then-Orthogonalize, and Two-Sided-Randomization. We study the com-
putational cost of these algorithms in some detail and show that it can be much smaller
than the standard TT-rounding algorithm. Additionally, we consider the special case
of rounding a TT-tensor that is represented as the sum of many TT-tensors.
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Fig. 4.2. Illustration of the speedups (left) and TT-ranks of the Krylov basis vectors (right)
obtained by the deterministic and randomized summation and rounding algorithms within the TT-
GMRES algorithm to solve problem (D.1).
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Fig. 4.3. Illustration of the timings using the deterministic and randomized summation and
rounding algorithms within the TT-GMRES algorithm to solve problem (D.1).

While applying each of the randomized algorithms proposed here can reduce the
computational cost over standard TT-rounding, we further exploit the structure of the
problem to reduce the computational cost to be linear in the number of summands.
We perform extensive numerical experiments and achieve over 20× speedups on test
problems compared to standard algorithms. There are many avenues for future inves-
tigations. First, it would be interesting to derive probabilistic bounds for the accuracy
of the rounding approach. Second, we could consider extending our algorithms to the
case where the TT-tensor is obtained as the Hadamard (or elementwise) product of
two tensors. Finally, another extension worth considering is developing randomized
rounding algorithms in the H−Tucker format.
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Appendix A. Computational cost of standard TT algorithms.
In this section, we analyze the computational cost of the standard approach to

TT-rounding which is presented in Subsection 2.3.
To analyze the computational cost, we make the following assumptions that

will simplify the analysis. Let Y ∈ RI×···×I be a tensor of order N with ranks
(1, R, . . . , R, 1) in TT format. We want to compress Y to obtain a TT-tensor X

with target ranks (1, `, . . . , `, 1) assuming that ` = Θ(R). We explain in some detail
the analysis of the computational costs of the algorithms described in Subsection 2.3,
since it will help analyze the computational costs of the proposed algorithms.

Right-to-Left Orthogonalization (Algorithm 2.1). The two main contributions to
the leading order flop cost are: (1) in Line 4, the thin QR factorization of the matrix
H(TX,n) of size IR×R, which cost 4IR3+O(R3) flops; (2) in Line 5, the multiplication
of a matrix of size IR×R with another matrix of size R×R that forms the product
V(TY,n−1)R>. Since R is triangular, the computation in Line 5 requires only IR3

flops to leading order. Therefore, the resulting total cost of Algorithm 2.1 is

COrth = I(N − 2) · 5R3 +O(IR2 +NR3) flops.(A.1)

TT-Rounding (Algorithm 2.2). The main contributions to the total cost of TT-
rounding come from two sources: in Line 2, we first right-orthogonalize Y to obtain
X using Algorithm 2.1; this cost has just been analyzed and is given by COrth. Next
we analyze the cost of the loop in Lines 5 to 10. In Line 6, we compute the QR
factorization of matrix V(TX,n) of size I` × R using the Householder-QR algorithm,
which costs 4I`R2 +O(R3) flops. Next, in Line 7 performing the SVD requires O(R3)
flops. The next two steps in lines Lines 8 and 9 prepare the factors for the next
iteration. The matrix-matrix multiplication in Line 8 costs 2IR`2. Notice that the
size of TX,n has been reduced from the previous iteration, so that Line 9 requires
2IR2` flops. Hence, the total cost of Algorithm 2.2 is

CTTR = COrth + (N − 2) ·
(
6IR2`+ 2IR`2

)
+O(IR2 +NR3)

= I(N − 2) ·
(
5R3 + 6R2`+ 2R`2

)
+O(IR2 +NR3) flops.

Right-to-Left Partial Contraction (Algorithm 2.3). Consider two TT-tensors X

and Y with ranks {RX
j } and {RY

j }. For simplicity of exposition, we take ` = RX
j

and R = RY
j for j = 1, . . . , N − 1; that is we take the same ranks in each core

tensor. We denote the computational cost of Algorithm 2.3 by CContr. The first
contribution in the computational cost (Lines 4 and 5) comes from two different
matrix multiplications, i.e., matrix of size I`× ` with the one of size `×R which costs
2I`2R flops, and matrix of size `× IR with the one of size IR×R which costs 2IR2`
flops. The cost of Line 2 is of order O(IR`) flops. The overall cost of Algorithm 2.3
is, therefore,

CContr = I(N − 2) · (2R`2 + 2R2`) +O(IR`) flops.(A.2)

If ` = R, then we are computing an inner product and the associated cost is CContr =
4(N − 2)IR3 +O(IR2) flops.

Appendix B. Additional Tensor network diagrams.
In Figures 3.1 and B.1, we give tensor network diagrams that help illustrate the

random projection steps in Algorithm 3.1 and Algorithm 3.2. In Figures B.2 to B.4,
we provide the tensor network diagrams illustrating Algorithm 3.3.
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Fig. B.2. Random projections for Two-Sided-Randomization (Generalized Nyström) Algo-
rithm 3.3.
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Fig. B.3. Internal left and right factors in the Two-Sided-Randomization (Generalized Nys-
tröm) Algorithm 3.3.
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Fig. B.4. Left and right factors distributions within the Two-Sided-Randomization (General-
ized Nyström) Algorithm 3.2.

Appendix C. Additional Numerical Experiments: Hilbert-type TT-
tensor.

To supplement the numerical experiments in the main manuscript, we propose a
Hilbert-type TT-tensor, i.e., a TT-tensor X ∈ RI1×···×IN with the cores of the form

TX,n =
1

i1 + i2 + i3 − 1
, 1 ≤ i1 ≤ rn−1, 1 ≤ i2 ≤ In, 1 ≤ i3 ≤ rn,
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for n = 1, . . . , N . Our definition of a Hilbert-type TT-tensor is inspired by Hilbert
matrices, i.e., symmetric and positive definite matrices with rapidly decaying singular
values. Since the singular values of each mode-unfolding of the cores of the Hilbert-
type TT-tensor decay very quickly, it is a useful tensor for validating the accuracy of
the randomized algorithms proposed in this paper.

In our test, we consider the order-10 Hilbert-type TT-tensor with dimensions
I1 = 6, I2 = 8, . . . , I10 = 24 and ranks (1, 4, 5, 6, . . . , 11, 12, 1) and compare numeri-
cally the deterministic approach (Algorithm 2.2), the Orthogonalize-then-Randomize
algorithm and the Randomize-then-Orthogonalize algorithm (Algorithms 3.1 and 3.2,
respectively). Results of our experiments are presented in Figure C.1, with all three
algorithms exhibiting a very similar accuracy.
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Fig. C.1. Hilbert TT-tensor truncation. Relative Error between a low rank approximation
obtained via deterministic or randomized TT-rounding, and a full rank Hilbert TT-tensor.

Appendix D. Additional details regarding Subsection 4.2.
In this section, we present additional details regarding the cookie problem we

examined in Subsection 4.2.

(D.1)
−div(σ(x, y;ρ)∇(u(x, y;ρ))) = f(x, y) in Ω,

u(x, y;ρ) = 0 on ∂Ω,

where Ω is (−1, 1)× (−1, 1), ∂Ω is the boundary of Ω and σ is defined as follows

σ(x, y;ρ) =

{
1 + ρi if (x, y) ∈ Di,

1 elsewhere,

where Di for i = 1, . . . , N−1 are disjoint disks distributed in Ω such that their centers
are equidistant (see Figure D.1) and ρi is selected from a discrete set of Ii+1 samples
Ji ⊂ R for i = 1, . . . , N − 1.
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Discretizing this problem in Ω yields the set of
∏N−1
i=1 Ii+1 parametrized linear systems

of equations (
A1,1 +

N−1∑
i=1

ρiAi+1,1

)
x = f ,

where A1,1 ∈ RI1×I1 is the discretization of the operator −div(σ(x, y;ρ)∇(u(x, y;ρ)))
in Ω and Ai+1,1 ∈ RI1×I1 are the discretizations of −div(χDi∇(·)) in Ω where χS
denotes the indicator function of the set S, and f is the discretization of the function
f .
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