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Abstract. This paper considers a probabilistic model for floating-point computation in which
the roundoff errors are represented by bounded random variables with mean zero. Using this model,
a probabilistic bound is derived for the forward error of the computed sum of n real numbers. This
work improves upon existing probabilistic bounds by holding to all orders, and as a result provides
informative bounds for larger problem sizes.
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1. Introduction. It is generally known that deterministic error bounds for the
computation of sums in finite precision are pessimistic in practice. Classical bounds
grow proportionally to nu where n is the problem size and u is the unit roundoff, but
these bounds can be entirely uninformative when solving moderately large problems
using low precision formats such as IEEE fp16 (where u ≈ 5 × 10−4) [1] or bfloat16
(where u ≈ 4× 10−3) [8].

For decades a rule of thumb has suggested that the error will typically grow
proportionally to

√
nu instead. Higham and Mary [5] show how to turn this rule

of thumb into a rigorous error bound by making the useful (if not always realistic)
assumption that the rounding errors in successive computations can be modeled as
zero-mean independent random variables. They note that while the probabilistic
bound in [5] tends to be much closer to the actual error than the classical deterministic
bounds are, it is still pessimistic by a factor of around

√
n when the numbers to be

summed are sampled from a zero-mean distribution.
Higham and Mary derive a second bound in [6] that both gives sharper results for

random zero-mean data and weakens the assumption of independence of the rounding
errors. Connolly, Higham, and Mary conclude in [3] that this second probabilistic
bound will hold unconditionally when using stochastic rounding, where by contrast it
still provides only a rule of thumb for deterministic rounding.

1.1. Contributions. In this article we refine the probabilistic bound of [6] so
that it holds to all orders. The earlier bound holds to first order only, and consequently
works well when nu < 1 but is less informative for larger n. Our refined version gives
useful error bounds as long as λ

√
nu < 1, where λ is a parameter that grows very

slowly with n.
The paper contains four main theorems.
• Theorem 3.3 gives a structural result under the simplifying assumption that

the rounding errors are independent random variables with mean zero. The-
orem 5.2 uses this result to give a priori bounds under the assumption that
the data to be summed are drawn randomly from a given interval.

• Theorem 4.1 gives a slightly weaker structural bound under the more lenient
assumption that the rounding errors are mean-independent rather than in-
dependent. Theorem 5.1 uses this result to give a priori bounds in the same
manner as Theorem 5.2.
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Theorems 4.1 and 5.1 will hold unconditionally for stochastic rounding.
Numerical experiments show that our bounds are pessimistic by about an order

of magnitude, but accurately describe the growth rate of the forward error up to
the point where λ

√
nu ≈ 1. Beyond this point the sums computed using recursive

summation have little relative accuracy in practice, and so our bounds suffice for
practical purposes.

2. Background. In this section we introduce notation, our models for the round-
off errors and data, and some useful tools from probability theory.

2.1. Notation. Let x1, . . . , xn be the data to be summed. For each k = 1 : n we

denote the exact and computed partial sums by sk =
∑k

i=1 xi and ŝk = fl
(∑k

i=1 xi

)
,

respectively. The computed sums ŝk may be expressed through the recurrence

ŝk =

{
s1 k = 1,

(ŝk−1 + xk)(1 + δk) 2 ≤ k ≤ n,

where δk denotes the relative perturbation due to roundoff at the k-th step. For
convenience, we let δ1 = 0. We define Ek = ŝk − sk to represent the forward error in
the computation, and define sk = [s2, . . . , sk] for notational convenience.

Finally, we define the function λ : (0, 1)→ R by

(2.1) λ(δ) =
√

2 log(2/δ).

This expression appears frequently in our error bounds and illustrates how the prob-
abilistic bound changes with respect to the desired failure probability δ (and possibly
also the problem size). As noted in [9], λ(δ) grows very slowly as δ approaches zero.
Even when δ = 10−16, for example, we would have λ(δ) ≤ 9.

2.2. Models for roundoff error and data. We use the standard model for
floating-point arithmetic [4]:

(2.2) fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /,√},

where u is the unit roundoff. This model holds for IEEE arithmetic, with the exception
of denormalized numbers. For the stochastic rounding system [3]

(2.3) fl(x) =

{
dxe with probability p = (x− bxc)/(dxe − bxc),
bxc with probability 1− p,

the model will hold with |δ| ≤ 2u. Here bxc and dxe are respectively the largest and
smallest floating-point numbers satisfying bxc ≤ x ≤ dxe.

Our first structural bound, given in Theorem 3.3, relies on the following simplified
model for rounding errors.

Model 2.1. Let the computation of interest generate rounding errors δ1, δ2, . . . in
that order. The δk are independent random variables of mean zero satisfying |δ| ≤ u.

When using stochastic rounding, Model 2.1 will hold with |δk| ≤ 2u instead of |δk| ≤ u.
The second bound, given in Theorem 4.1, uses a model that weakens the in-

dependence assumption to one of mean independence but tightens the boundedness
condition. This new model still provides only a rule of thumb for deterministic round-
off errors, but it accurately describes the stochastic rounding system (2.3).
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Model 2.2. Let the computation of interest generate rounding errors δ1, δ2, . . .
in that order. The δk are random variables of mean zero satisfying

E(δk|δ1, . . . , δk−1) = E(δk) (= 0).

Furthermore, the δk satisfy ak ≤ δ ≤ bk, where ak and bk are functions of the data
and of δ1, . . . , δk−1 satisfying bk − ak ≤ 2u.

Since the errors from deterministic rounding satisfy |δk| ≤ u, the boundedness condi-
tion in Model 2.2 is satisfied with ak = −u and bk = u. For stochastic rounding, by
contrast, the bound bk − ak ≤ 2u is stronger than the constant bound |δk| ≤ 2u.

Theorems 5.1 and 5.2 give a priori error bounds under the assumption that the
data are independent random variables drawn from an interval.

Model 2.3 (probabilistic model of the data). The xi, i = 1 : n, are independent
random variables sampled from a given distribution of mean µx and satisfy |xi−µx| ≤
Cx, i = 1 : n, where Cx is a constant.

Theorem 5.1 also uses a generalized version of Model 2.2 to include the assumption
that the δk are mean independent of the data xi in addition to the previous pertur-
bations.

Model 2.4 (probabilistic model of rounding errors for recursive summation).
Consider the computation of sn =

∑n
i=1 xi by recursive summation for random data

xi, satisfying Model 2.3. The rounding errors δ2, . . . , δn produced by the computation
are random variables of mean zero where for all k, the δk are mean independent of
the previous rounding errors and the data, in the sense that

(2.4) E(δk|δ2, . . . , δk−1, x1, . . . , xn) = E(δk) (= 0).

Furthermore, the δk satisfy ak ≤ δ ≤ bk, where ak and bk are both functions of
δ1, . . . , δk−1 and x1, . . . , xn satisfying bk − ak ≤ 2u.

Theorm 5.2 generalizes Model 2.1 similarly, assuming that the rounding errors are
fully independent of each other and of the data.

Model 2.1 is also used in [5]. Models 2.2 and 2.4 are similar to those used in
[6], but with the condition |δk| ≤ u replaced by the condition ak ≤ δk ≤ bk with
bk − ak ≤ 2u. Model 2.3 is similar to the model for the data used in [6], but the
condition |xi − µx| ≤ Cx replaces what was originally |xi| ≤ Cx.

2.3. Probability Theory. We use the following definition of a martingale [11].

Definition 2.1 (martingale). A sequence of random variables Z1, . . . , Zn is a
martingale with respect to the sequence X1, . . . , Xn if, for all k ≥ 1,

• Zk is a function of X1, . . . , Xk,
• E[|Zk|] <∞, and
• E(Zk+1|X1, . . . , Xk) = Zk.

We also use the following definition of a predictable process.

Definition 2.2 (predictable process). The sequence A1, . . . , An is a predictable
process with respect to the sequence X1, . . . , Xn if, for all k, Ak is a function of
X1, . . . , Xk−1.

The sequences {ak} and {bk} in Models 2.2 and 2.4 are predictable processes with
respect to the rounding errors and the data.

The two definitions above are used in the following concentration bound [12].
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Lemma 2.3 (Azuma-Hoeffding inequality). Let Z1, . . . , Zn be a martingale with
respect to a sequence X1, . . . , Xn. Let {Ak}nk=2 and {Bk}nk=2 be predictable processes
such that for all k = 2 : n

Ak ≤ Zk − Zk−1 ≤ Bk and Bk −Ak ≤ 2ck

z where the ck are constants. Then for any δ ∈ (0, 1), with failure probability at most
δ,

(2.5) |Zn − Z1| ≤ λ‖cn‖2,

where cn = [c2, . . . , ck] and λ = λ(δ) =
√

2 log(2/δ).

The Azuma-Hoeffding inequality admits two useful generalizations.
• It is noted in e.g. [13, 10] that for the Azuma-Hoeffding inequality and sev-

eral other concentration bounds the term |Zn − Z1| may be replaced by
max1≤k≤n |Zk − Z1|. We refer to this generalization as the maximal ver-
sion of the Azuma-Hoeffding inequality, and it will sometimes allow us to
avoid having to apply a union bound.

• The bounds on the differences Zk−Zk−1 may fail with small probability and
a similar but weaker concentration inequality will hold [2]. Specifically, if the
inequalities Bk − Ak ≤ 2ck hold simultaneously for all k = 2 : n with total
failure probability at most η, then (2.5) will still hold with failure probability
at most δ + η.

3. First structural bound. We begin by deriving a probabilistic bound under
Model 2.1, which assumes independence of the roundoff errors. To do this, we use the
following expression for the forward error.

Lemma 3.1. Let sn =
∑n

i=1 xi. The forward error from recursive summation
satisfies

(3.1) En = ŝn − sn =

n∑
k=2

skδk

n∏
j=k+1

(1 + δj).

Proof. From the model for roundoff error we have ŝk = (ŝk−1 + xk)(1 + δk) for
k = 2 : n. Subtracting sk from both sides gives

ŝk − sk = (ŝk−1 − sk−1 + sk−1 + xk)(1 + δk)− sk
= (ŝk−1 − sk−1 + sk)(1 + δk)− sk
= (ŝk−1 − sk−1)(1 + δk) + skδk.

The claim follows by unraveling the recurrence and using ŝ1 − s1 = 0.

A theorem by Higham and Mary [5] allows us to bound the magnitude of the
terms in (3.1) with high probability. We present a modified version here.

Lemma 3.2. Let δ1, . . . , δn be independent random random variables of mean zero
with |δk| ≤ u. Then for any δ ∈ (0, 1), with failure probability at most δ,

max
1≤k≤n

∣∣∣∣∣∣
n∏

j=k+1

(1 + δj)− 1

∣∣∣∣∣∣ ≤ γ̃n(δ),

where

γ̃n(δ) := exp

(
λ(δ)
√
nu+ nu2

1− u

)
− 1.
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Proof. Modify the proof of Theorem 4.6 in [3] to let Zk =
∑n

j=n−k+2 δj for
k = 1 : n, and replace the use of the Azuma-Hoeffding inequality with its maximal
version.

We now have the tools we need to put a probabilistic bound on the forward error.

Theorem 3.3. Let sn =
∑n

i=1 xi and let ŝn be computed by recursive summation,
and assume that Model 2.1 holds. Then for any δ ∈ (0, 1), with failure probability δ,

(3.2) |En| ≤ u‖sn‖λ(δ/2)(1 + γ̃n(δ/2)).

Proof. For k = 1 : n− 1 define the random variables

Zk =

n∑
j=n−k+1

sjδj

n∏
`=j+1

(1 + δ`).

Then Zn−1 = En by Lemma 3.1, and Z1, . . . , Zn−1 is a martingale with respect to
the random variables δn, . . . , δ2. Furthermore, by Lemma 3.2 the bounds

(3.3) |Zk − Zk−1| =

∣∣∣∣∣sn−k+1δn−k+1

n∏
`=n−k+2

(1 + δ`)

∣∣∣∣∣ ≤ u|sn−k+1|(1 + γ̃n(δ/2))

all hold simultaneously with failure probability at most δ/2. The claim follows apply-
ing the Azuma-Hoeffding inequality with failure probability δ/2.

3.1. Commentary. We make a few observations about Theorem 3.3. First, the
theorem will hold for stochastic rounding with the substitution u← 2u. Second, the
term 1 + γ̃n(δ/2) remains close to 1 as long as λ(δ/2)

√
nu < 1, but for larger problem

sizes it increases exponentially. One interpretation of this observation is that if a
sufficient majority of rounding operations are away from zero (i.e., δk > 0), the error
in the computed sum will grow rapidly.

Finally, we emphasize that the proof of the theorem relies on the assumption
that the perturbations are independent. Under the broader Model 2.2 which assumes
only mean-independence of the perturbations, the sequence Z1, . . . , Zn−1 would not
necessarily be a martingale. As of the time of writing, the author has been unable
to find a modification to the proof that would accommodate Model 2.2. A different
approach is therefore in order.

4. Second structural bound. In order to obtain a probabilistic bound that
holds under Model 2.2, we introduce a new expression for the forward error. Consider
the expression for En in (3.1) as a multivariate polynomial with respect to the variables
δ2, . . . , δn, and rewrite it as

(4.1) En =

n−1∑
j=1

S(j)
n ,

where each S
(j)
n is the sum of all terms of order j. From the proof of Lemma 3.1 we

observe that the forward error satisfies the recurrence Ek = Ek−1(1 + δk) + δksk for
k = 2 : n. By equating terms of order j on both sides, we get

S
(j)
k =


0 k = 1,

S
(j)
k−1 + δksk k > 1, j = 1

S
(j)
k−1 + δkS

(j−1)
k−1 k > 1, j > 1.



6 ERIC HALLMAN

Note that S
(j)
k = 0 whenever j ≥ k since the error in the sum of k numbers contains

no terms of order greater than k − 1.
By unraveling the above recurrence, we obtain an identity analogous to the

hockey-stick identity for binomial coefficients.

S
(j)
k =

{∑k
i=2 δisi j = 1,∑k
i=2 δiS

(j−1)
i−1 j > 1.

The key idea in the proof of Theorem 4.1 is that for each j = 1 : n−1, the sequence of

random variables S
(j)
1 , . . . , S

(j)
n is a martingale with respect to δ1, . . . , δn under Model

2.2 because each term S
(j−1)
i−1 is a function of δ1, . . . , δi−1. Given a bound on the

terms of order j − 1, we can therefore use the Azuma-Hoeffding inequality to bound
the terms of order j. By repeating this process for each j = 1 : n − 1 and using the
identity (4.1), we obtain the following bound on the forward error.

Theorem 4.1. Let sn =
∑n

i=1 xi and let ŝn be computed by recursive summation,
and assume that Model 2.2 holds. Then for any δ ∈ (0, 1), with failure probability δ,

|En| ≤
(

1− κn−1

1− κ

)
λ‖sn‖2u.

where λ := λ(δ/(n− 1)) =
√

2 log(2(n− 1)/δ) and κ := κ(n, δ) = λ
√
nu.

Proof. Begin with the first-order error term S
(1)
n =

∑n
i=2 δisi. By applying the

maximal Azuma-Hoeffding inequality, it follows that with failure probability at most
δ/(n− 1),

(4.2) max
1≤k≤n

|S(1)
k | ≤ u‖sn‖2

√
2 log(2(n− 1)/δ) =: β.

Continue to the second-order term S
(2)
n =

∑n
i=2 δiS

(1)
i−1. The bound (4.2) holds with

failure probability at most δ/(n − 1), so by applying the maximal Azuma-Hoeffding
inequality with failure probability δ/(n− 1) it follows that with failure probability at
most 2δ/(n− 1),

max
1≤k≤n

|S(2)
k | ≤ u

(
n∑

i=2

β2

)1/2√
2 log(2(n− 1)/δ)

≤ uβ
√
n
√

2 log(2(n− 1)/δ)

= κβ.

(4.3)

More than that, it follows that with failure probability at most 2δ/(n−1) the bounds
(4.2) and (4.3) hold simultaneously.

Continuing in this manner for j = 3, . . . , n − 1, we conclude that with failure
probability at most δ the bound

max
1≤k≤n

|S(j)
k | ≤ κ

j−1β

holds for all 1 ≤ j ≤ n − 1 simultaneously. The claim follows by using the triangle
inequality on the expression for the forward error in (4.1).
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5. Probabilistic bound for random data. Following the lead of Higham and
Mary [6], we derive an error bound that does not directly depend on the partial
sums sk by making some assumptions about the distribution of the data xi. These
assumptions, and the modified model for rounding errors, are given in Models 2.3 and
2.4. In short, the data are assumed to be independent random variables satisfying
|xi − µx| ≤ Cx for constants µx and Cx, and the perturbations δk are assumed to
be mean-independent of the previous perturbations δ1, . . . , δk−1 as well as the data
x1, . . . , xn.

By applying the maximal Azuma-Hoeffding inequality to the variables Z1 = 0,
Zk+1 = sk − kµx for k = 1 : n, we find that with failure probability at most δ/n,

max
1≤k≤n

|sk − kµx| ≤
√
nCx

√
2 log(2n/δ),

and therefore that with failure probability at most δ/n,

max
1≤k≤n

|sk| ≤ k|µx|+
√
nCx

√
2 log(2n/δ),

which implies that with failure probability at most δ/n,

(5.1) ‖sn‖2 ≤ n3/2|µx|+ nCx

√
2 log(2n/δ).

By inserting this probabilistic bound into Theorem 4.1 applied with failure probability
(n− 1)δ/n, we arrive at the following a priori probabilistic bound.

Theorem 5.1. Let sn =
∑n

i=1 xi and let ŝn be computed by recursive summation,
and assume that the data and perturbations satisfy Model 2.4. Then for any δ ∈ (0, 1),
with failure probability at most δ,

|En| ≤
(

1− κn−1

1− κ

)(
λ|µx|n3/2 + λ2Cxn

)
u,

where λ := λ(δ/n) =
√

2 log(2n/δ) and κ := κ(n, δ) = λ
√
nu.

This theorem closely resembles Theorem 2.8 of [6], but differs notably in that it
holds to all orders where the earlier theorem holds only to first order. A more minor
difference is that the term Cx bounds |xi−µx| where in the earlier theorem it bounded
|xi|, so for the same set of data Theorem 5.1 may admit a smaller constant Cx.

In a similar manner, we can combine (5.1) with Theorem 3.3 to derive a tighter
error bound under the assumption that the δk are independent of each other and
the data. By taking (5.1) with failure probability δ/3 and Theorem 3.3 with failure
probability 2δ/3, we get the following result. Note that as with Theorem 3.3, it
requires the substitution u← 2u to apply to stochastic rounding.

Theorem 5.2. Let sn =
∑n

i=1 xi and let ŝn be computed by recursive summation.
Assume that the data satisfies Model 2.3 and that the perturbations satisfy Model 2.1
and are furthermore independent of the data. Then for any δ ∈ (0, 1), with failure
probability at most δ,

|En| ≤ (1 + γ̃n(δ/3))
(
λ|µx|n3/2 + λ2Cxn

)
u,

where λ := λ(δ/3) =
√

2 log(6/δ).
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Fig. 6.1. Absolute forward error bounds for the half precision computation of
∑n

i=1 xi with
random uniform [−1, 1] data. The shaded regions enclose the 25th and 75th percentile errors over
50 trials with δ = 0.05. Left: Deterministic rounding. Right: Stochastic rounding.

6. Numerical experiments. Here we present several numerical experiments
to test our probabilistic bounds. The experiments are done in Matlab R2021a, and
half precision (fp16) and bfloat16 are simulated using the Matlab function chop1 as
implemented by Higham and Pranesh in [7]. The chop function can simulate both
deterministic and stochastic rounding.

6.1. Error bounds. In the first set of experiments, we examine how well the
bounds of Theorems 5.1 and 5.2 describe the error in practice. For random uniform
[−1, 1] data, we compute sn =

∑n
i=1 xi using recursive summation in double precision,

half precision, and the bfloat16 format. The forward errors are then computed using
the double precision computation as the exact answer.

The results of 50 trials are shown for fp16 in Figure 6.1 and for bfloat16 in Figure
6.2. The probabilistic error bounds of Theorems 5.1 (assuming mean-independence of
the roundoffs) and 5.2 (assuming full independence) are shown for failure probability
δ = 0.05. As was the case for the error bounds of [6], our bounds are pessimistic
and appear to hold in practice with λ ≈ 1. The errors under stochastic rounding
are not notably different from those under deterministic rounding even though the
error bound of Theorem 5.2 is more pessimistic for stochastic rounding due to the
substitution u← 2u. If anything, the worst-case errors for stochastic rounding appear
run slightly smaller than their deterministic counterparts.

Because the new bounds hold to all orders, however, they establish that the
forward error can be expected to grown in a controlled manner at least until λ

√
nu ≈ 1.

Taking λ ≈ 9, this bound corresponds to the problem sizes n ≈ 3.5 × 1012 for single
precision, n ≈ 5.2 × 104 for fp16, and n ≈ 810 for bfloat16. The precise behavior
of the error beyond this point is something of a moot question: Higham and Mary
note in [6] that the relative forward error of the computed sum will typically grow
proportionally to

√
nu. Thus if

√
nu > 1 the computed sum may not have any relative

accuracy at all.

6.2. Cumulative rounding errors. The previous experiments test problem
sizes as large as as n = u−2, or equivalently to the point where

√
nu = 1. It is

1https://github.com/higham/chop

https://github.com/higham/chop


PROBABILISTIC ERROR BOUND 9

Fig. 6.2. Absolute forward error bounds for the bfloat16 computation of
∑n

i=1 xi with random
uniform [−1, 1] data. The shaded regions enclose the 25th and 75th percentile errors over 50 trials
with δ = 0.05. Left: Deterministic rounding. Right: Stochastic rounding.

interesting that at least up to this point the forward errors do not begin to grow
rapidly in the manner that the error bounds of Theorems 5.1 and 5.2 would predict.
In Section 3.1, we note that the errors might be expected to grow rapidly if a sufficient
majority of the rounding operations are away from zero, in which case the product∏n

i=1(1 + δi) would grow exponentially.
In the second set of experiments, we examine how the product

∏n
i=1(1+δi) grows

in practice and compare it to the bounds of Lemma 3.2. For random uniform [−1, 1]
data, we compute sn =

∑n
i=1 xi using recursive summation in blfoat16. At each index

i, we record the size of the perturbation δi by comparing ŝi = fl(ŝi−1+xi) to the value
where ŝi−1 is computed using bfloat16 but the addition ŝi−1 + xi is done in single
precision. The problem size n ranges from 10 to 3 × 105 ≈ 4.5u−2, and 50 trials are
run for each value of n.

Results are shown in Figure 6.3, with a vertical dashed line representing the point
where

√
nu = 1. To the right of this line, the relative error will typically be close

to 1 and so the precise behavior of the error is of less practical importance. As with
the previous experiments, the bounds of Lemma 3.2 are pessimistic and appear to
hold in practice with λ ≈ 1. Unlike the previous experiments, the errors behave quite
differently depending on whether deterministic or stochastic rounding is used. The
discrepancy is likely due to stagnation: once the computed partial sums ŝi exceed u−1

in magnitude, the deterministic rounding errors become biased toward zero. When
using stochastic rounding the errors remain unbiased and so exponential growth in
the product

∏n
i=1(1 + δi) is still possible, but the median product starts to decline

because rounding toward zero becomes more likely than rounding away from zero.
In summary, around the point when

√
nu ≈ 1 we observe the following phenom-

ena:
• The probabilistic bounds of this article grow rapidly and fail to capture the

actual behavior of the errors.
• Due to stagnation, the forward error for deterministic rounding will not grow

exponentially. Exponential growth in the error may still occur for stochas-
tic rounding, but if so it happens significantly later than our bounds would
predict.

• The relative forward error in the computed sum approaches 1 for a typical
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Fig. 6.3. Products
∏n

i=1(1+δi) from the bfloat16 computation of
∑n

i=1 xi with random uniform
[−1, 1] data. The shaded regions enclose the 25th and 75th percentile errors over 50 trials with
δ = 0.05. Left: Deterministic rounding. Right: Stochastic rounding.

trial, for data with either zero or non-zero mean. It is therefore not recom-
mended to compute sums of size n ≈ u−2 or larger using recursive summation.

7. Conclusions. We have introduced two probabilistic bounds on the forward
error of a sum computed using recursive summation. Our bounds are made explicit
to all orders and hold up to problem sizes n where λ

√
nu ≈ 1, where u is the unit

roundoff and λ a small constant factor. Although the bounds appear to be pessimistic
in practice by about an order of magnitude, they accurately describe the growth rate
of the error for problem sizes of practical interest. The model of roundoff error used for
one of these bounds accurately describes the behavior of at least one type of stochastic
rounding, and so the associated bound may be taken not just as a rule of thumb for
the behavior of the error under deterministic rounding, but as a rigorous bound on
the growth of the forward error when using stochastic rounding.
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